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1 Angles and Coordinate Systems

We consider only angles in the plane. A plane angle characterizes the
relative rotation of two semi-infinite straight lines (→ legs) crossing
in a point (→ apex), so it measures the relative orientation of the
two lines. Angles are usually denoted by Greek characters.ϕ

1

2

Coordinates and coordinate systems fulfill the purpose of unequivo-
cally defining the positions of points on a plane, in the three-dimen-
sional (3-d) space or in a space of higher dimension (n-d). There
are many possibilities of defining coordinates. We discuss the most
important ones.

1.1 Plane Angles

1.1.1 Magnitude of an Angle

• Draw a circle with radius r around the apex. The legs cut an
arc of length b out of it. The magnitude of the corresponding
angle ϕ (in radians) is then defined as

ϕ =
arc length

radius
=
b

r
(1.1)ϕ

r

r
b

1

2

• One defines
full angle, ϕ = 2π
reflex angle, π < ϕ < 2π
straight angle, ϕ = π
obtuse angle, π/2 < ϕ < π
right angle, ϕ = π/2
acute angle, 0 < ϕ < π/2

• Right angles are often indicated by a dot or a double arc.

• Unit of angles

[ϕ] =
1 m

1 m
= 1 radian (rad)

In addition: Division in degrees (◦), arc minutes ( ′), and arc
seconds ( ′′),

1◦ =̂ 60 ′ =̂ 3600 ′′

A full angle has the magnitude 360◦ or 2π (rad), respectively.

• Sense of rotation, sign of angles: A counter-clockwise rotation
is defined to have positive sign, a clockwise one is negative.
This convention applies also to angles measuring the rotation.

α
1

2

α > 0

α
1

2

α < 0
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1.1.2 Converting between Degrees and Radians

• Radians → degrees, minutes, seconds

ϕ = x rad = x rad
360◦

2π rad
= x

(
180

π

)◦
(1.2)

• Degrees, minutes, seconds→ radians

ψ = y◦ = y◦
2π rad

360◦
= y

( π

180

)
rad (1.3)π rad =̂ 180◦

• Examples

1 rad =̂ 57,2958◦ = 57◦17 ′45 ′′

1◦ =̂ 1,7453 · 10−2 rad = 0,017453 rad = 17,453 mrad

(1 mrad = 10−3 rad [milli-radians])

1.1.3 Trigonometric Funktions

• Draw a circle with radius r around an apexM. Two semi-infinite
straights 1 and 2 enclose the angle α. From the intersection S
between straight 2 and the circle, draw a line perpendicular
to straight 1, hitting it in base point F. MFS is then a right
triangle having the circle radius r as hypotenuse. Consider also
the vertical tangent to the circle on the right and the horizontal
tangent at the top. The figure shows the situation for r = 1
(“unit circle”).

α

M F

S

r = 1

1

2

cosα

sinα

tanα

cotα

• The trigonometric functions of the angle α are defined as fol-
lows

sinα =
FS

MS
(1.4)

cosα =
MF

MS
(1.5)

tanα =
FS

MF
=
sinα

cosα
(1.6)

cotα =
MF

FS
=
cosα

sinα
=

1

tanα
(1.7)

More about these functions follows in Chapter 3.→ Chapter 3

• If we know, e. g., the value of tanα, how can we obtain the an-
gle α? This is possible via the arc functions or inverse trigono-
metric functions. Example

α = arctan (tanα) = arctan

(
FS

MF

)
(1.8)

They are defined to all the trigonometric functions. More de-
tails in Chapter 3.
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1.2 Coordinate Systems in the Plane

1.2.1 Cartesian Coordinates

• A point in the plane is defined as coordinate origin. Through
this point, two mutually perpendicular straigh lines are laid,
the coordinate axes. Then any point in the plane can be unique-
ly characterized by its smallest distances (with signs!) from the
axes, its Cartesian coordinates,

P = (xP;yP) (1.9)
x

y

O

P

yP

xP

• Other names for the x axis are 1-axis or abscissa, other words
for the y axis are 2-axis or ordinate.

• The angle from the positive x or 1-axis to the positive y or 2-
axis must be positive.

1.2.2 Polar Coordinates

• This is a coordinate system not using straight axes.

• Define a point as coordinate origin and one reference axis. The
latter usually coincides with the x axis (or 1-axis) of a Cartesian
system.

• The position of a point P is characterized by its distance from
the origin and the angle between the connecting line OP and
the reference axis,

P = (r;ϕ) (1.10)

O

P

ϕ

r

• The coordinate transformation is easily possible with the trigo-
nometric functions and elementary geometry. (The index “P”
of the Cartesian coordinates is omitted in the following.)

P = (x;y) = (r;ϕ) (1.11)

so

x = r cosϕ (1.12)

y = r sinϕ (1.13)

and, in the other direction1,

r =
√
x2 + y2 (Pythagoras’s law) (1.14)

ϕ = arctan
y

x
bzw. tanϕ =

y

x
(1.15)

x

y

O

P

ϕ

r
y

x

1 In this and the following transformations for angle coordinates, add π to the arctan
function in the second and third quadrant, e. g., ϕ = arctan(y/x) +π.
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1.3 Coordinate Systems in 3-d Space

1.3.1 Cartesian Coordinates

Perpendicular to the xy plane, a third coordinate axis (z axis or 3-
axis) is added such that x, y, and z axis form a right-handed coordi-
nate system, i. e., the three axes are represented by thumb, index-,
and middle finger of the right hand (in this order!). The Cartesiancorkscrew rule
coordinates of any point in 3-d space are then its shortest distances
(again with sign!) from the planes spanned by each two of the axes,

x coordinate — distance from the y z plane
y coordinate — distance from the z x plane
z coordinate — distance from the xy plane

1.3.2 Cylindrical Coordinates

• Starting from polar coordinates in the plane, add the perpen-
dicular z axis through the coordinate origin. Any point in 3-d
space is then uniquely defined by two length coordinates (ρ and
z) and one angle (ϕ).

• The distance from the origin in the xy plane is often called ρ
(rather than r) in order not to confuse it with spherical coordi-
nates (see below).

• All the points with ρ = const. are located on the surface shell
of a cylinder.

x

y

z

P

O
ϕ ρ

z

• Coordinate transformation

x = ρ cosϕ (1.16)

y = ρ sinϕ (1.17)

z = z (1.18)

and, in the other direction,

ρ =
√
x2 + y2 (1.19)

ϕ = arctan
y

x
or tanϕ =

y

x
(1.20)

z = z (1.21)

1.3.3 Spherical Coordinates

• Here, the position of a point P is defined by its distance r from
the origin and two angles.

• θ is the angle between the connecting line OP and the positive
z axis.

• ϕ is the angle between the projection of OP onto the xy plane
and the positive x axis. The projection is equivalent to the
cylindrical coordinate ρ; it has the length r sin θ =

√
x2 + y2.

Consequently, ϕ is identical in cylindrical and spherical coor-
dinates.

• θ varies between 0 and π, ϕ between 0 and 2π. θ is called polar
angle, ϕ azimuth (angle).x

y

z

O

θ

ϕ

r

r sin θ

P

r cos θ
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• All the points with r = const. are located on the surface of a
sphere. The xy plane is its equatorial plane, the point θ = 0
(i. e., x = y = 0; z = r) its north pole, and the point θ = π
(x = y = 0; z = −r) its south pole. The azimuth ϕ corresponds
to the geographical longitude, π/2− θ to the latitude.

• Coordinate transformation

x = r sin θ cosϕ (1.22)

y = r sin θ sinϕ (1.23)

z = r cos θ (1.24)

and, the other way around,

r =
√
x2 + y2 + z2 (1.25)

θ = arctan

√
x2 + y2

z
or tan θ =

√
x2 + y2

z
(1.26)

ϕ = arctan
y

x
or tanϕ =

y

x
(1.27)



2 Vector Analysis

Some quantities in physics are not completely characterized by their
value alone; instead, a direction must also be given. These quan-
tities are dubbed vectors; examples include velocity, force, or mo-
mentum. Many laws in physics can be formulated in a simpler and
more elegant way with vector analysis.

2.1 Scalars and Vectors

• Scalar: Quantity without a direction, characterized by value ·
unit. Examples:

time t = 10 s
mass m = 50 kg
volume V = 120 m3

temperature T = 298 K

• Vector: Quantity which also needs its direction to be specified
for complete characterization; hence, value · unit plus indication
of the direction. The name “vactor” derives from astronomy:
It denotes the fictitious straight line drawn from the Sun to a
planet, i. e., from one of the foci to a point on the ellipsoidal
orbit of the planet. An example is the velocity: v⃗ = 20 m/s,
with additional indication of the direction in which a particle
moves. Other examples of vectors are momentum p⃗, accel-
eration a⃗, angular momentum L⃗, electrical and magnetic field
strength (E⃗ and H⃗, respectively). Notion (e. g., for a velocity

vector):
v⃗−→. In print, vectors are often indicated by bold-face

characters:
v−→.

v⃗−→ v−→

• Absolute value of a vector: |⃗v| = v. The absolute value of a
vector (its “length”) is a scalar.

• Zero vector: The vector with value zero is the zero vector. Its
direction is undefined. Notion: 0⃗.

• Negative Vector: Start with a given vector a⃗. The negative
vector −a⃗ has the same absolute value as a⃗ but the opposite
direction.

a⃗

−a⃗

• Unit Vector: v⃗/|⃗v| = e⃗v = êv. The unit vector in a given direction
has the absolute value one (or unity). Unit vectors are often
denoted with a hat (^) instead of an arrow. Then

|êv| =

∣∣∣∣ v⃗|⃗v|
∣∣∣∣ = |⃗v|

|⃗v|
= 1 (2.1)

v⃗ =|⃗v| · êv = v · êv (2.2)

(v: value with measurement unit, êv: unit vector in the direc-
tion of v⃗).

v⃗ = |⃗v| · êv
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• Components of a Vector: The components of a vector are its
projections onto the axes of a coordinate system. For a 2-d
vector in the plane, e. g., this reads

v⃗ = v⃗x + v⃗y = |⃗vx| · êx + |⃗vy| · êy = vx · êx + vy · êy (2.3)

The transition to three dimensions is straightforward,

v⃗ = vx · êx + vy · êy + vz · êz (2.4)

vx, vy, vz are the components of the vector; êx, êy, êz are the
unit vectors parallel to the coordinate axes.

x

y

α
β

v⃗x

v⃗y

v⃗

• Parallel Shift: You can apply a parallel shift to an arrow re-
presenting a vector. This does not change the vector!

• Representation with Components: With the unit vectors

êx =

10
0

 ; êy =

01
0

 ; êz =

00
1

 (2.5)

an arbitrary vector v⃗ can be written as

v⃗ = vx · êx + vy · êy + vz · êz

= vx

10
0

+ vy

01
0

+ vz

00
1


=

vxvy
vz

 (2.6)

• Absolute Value of a Vector: For the 2-d example above we can
write

|⃗vx| = vx = v · cosα (2.7)

|⃗vy| = vy = v · cosβ = v · sinα (2.8)

and, with Pythagoras’s law,

v2x + v2y = v2 ·
(
cos2 α+ sin2 α

)
= v2 (2.9)

thus

v =
√
v2x + v2y (2.10)

The 3-d analog reads

v =
√
v2x + v2y + v2z (2.11)

• Position Vector: The position of a point P in space can be de-
fined by a vector from the origin O of the coordinate system to
this point P,

x

y

z

O

P

r⃗x

r⃗y

r⃗z

r⃗

r⃗ = r⃗x + r⃗y + r⃗z

= x · êx + y · êy + z · êz =

xy
z

 (2.12)
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with

|⃗r| = r =
√
x2 + y2 + z2 (2.13)

Example

r =
√
x2 + y2 + z2

r⃗ = 2 cm · êx − 3 cm · êy + 1 cm · êz
r =

√
14 cm ≈ 3,74 cm

2.2 Calculating with Vectors

2.2.1 Vector Addition

Start with a vector a⃗ and draw a second vector b⃗ from its end point.
Then the sum vector c⃗ = a⃗ + b⃗ is the vector connecting the starting
point of a⃗ with the end point of b⃗. In a similar way this applies to
more than two vectors.

c⃗ = a⃗+ b⃗ = b⃗+ a⃗ (2.14)

with cxcy
cz

 =

axay
az

+

bxby
bz

 =

ax + bx
ay + by
az + bz

 (2.15)

a⃗

b⃗

a⃗+ b⃗

2.2.2 Vector Subtraction

Subtracting a vector b⃗ means adding the negative vector −b⃗.

d⃗ = a⃗− b⃗ = a⃗+
(
−b⃗
)

(2.16)

with dxdy
dz

 =

axay
az

−

bxby
bz

 =

ax − bx
ay − by
az − bz

 (2.17)

Example

a⃗

b⃗

−b⃗

a⃗− b⃗

a⃗ =

 5−2
1

 ; b⃗ =

−3
1
−7

 ↪→ a⃗− b⃗ =

 8−3
8


2.2.3 Multiplication of a Vector with a Scalar

Let v⃗ be a vector and s a scalar. Then the vector s · v⃗ has the |s|-fold
amount of v⃗. It points in the same direction as v⃗ for s > 0 and in the
opposite direction for s < 0.v⃗

s · v⃗ (s > 1)
s · v⃗ = s

vxvy
vz

 =

s · vxs · vy
s · vz

 (2.18)

The distributive law applies,

s · (⃗v+ w⃗) = s · v⃗+ s · w⃗ (2.19)

(s+ t) · v⃗ = s · v⃗+ t · v⃗ (2.20)
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2.2.4 Scalar Product (Dot Product, Inner Product, Direct Product)

• Definition

a⃗ · b⃗ = axbx + ayby + azbz = ab cosα (2.21)

where α is the angle enclosed by the vectors a⃗ and b⃗. Impor-
tant: This formula can be used to calculate angles!

cosα =
a⃗ · b⃗
a b

=
axbx + ayby + azbz

ab
(2.22)cosα =

a⃗ · b⃗
a b

• The following rules apply:
Commutative law

a⃗ · b⃗ = b⃗ · a⃗ (2.23)

Distributive law

a⃗ ·
(
b⃗+ c⃗

)
= a⃗ · b⃗+ a⃗ · c⃗ (2.24)

• If two vectors ( ̸= 0⃗) are perpendicular to each other, their scalar
product yields zero,

a⃗ · b⃗ = 0 ↔ a⃗ ⊥ b⃗ (2.25)
α

a⃗

b⃗

︸ ︷︷ ︸
b cosα > 0

• Geometrical Interpretation: The scalar product is the product
of the absolute value of one vector with the projection of the
second vector onto the direction of the first one. Note: This
“projection” can be positive or negative, depending on the size
of α (positive for α < 90◦, negative for α > 90◦).

• Numerical example

a⃗ =

12
1

 ; b⃗ =

21
2

 ; ↪→ a⃗ · b⃗ = 6

cosα =
6

3
√
6
=
2√
6
; so α = 35,26◦

α

a⃗

b⃗

︸ ︷︷ ︸
b cosα < 0

• Example from physics: A force F⃗ acts on amass, which is moving
along a path s⃗. Then the work performed by the force on the
mass is equal to

W = F⃗ · s⃗

If F⃗ and s⃗ are perpendicular to each other, the work is zero.

α

s⃗

F⃗

2.2.5 Vector Product (Cross Product, Outer Product)

• Definition: The vector product a⃗ × b⃗ = c⃗ is a vector whose di-
rection is perpendicular to a⃗ and b⃗ and whose absolute value
is equal to the area of the parallelogram spanned by a⃗ and b⃗,

|⃗c| = c = ab sinα. (2.26)
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• The vectors a⃗, b⃗, and c⃗ (in this order!) compose a right-handed
trihedron, i. e., they are represented by thumb, index-, and
middle finger (also in this order!) of the right hand.

• The distributive law applies,

a⃗×
(
b⃗+ c⃗

)
= a⃗× b⃗+ a⃗× c⃗. (2.27)

α

a⃗

b⃗

c⃗

• The commutative law is not valid here,

a⃗× b⃗ = −b⃗× a⃗. (2.28)

Reason: the angle α (and also its sine value) changes sign when
a⃗× b⃗ = −b⃗× a⃗ a⃗ and b⃗ are exchanged.

• If two vectors (̸= 0⃗) are parallel or anti-parallel to each other,
their vector product yields zero,

a⃗× b⃗ = 0⃗ ↔ a⃗ ∥ b⃗. (2.29)

Especially the vector product of any vector with itself yields
zero,

a⃗× a⃗ = 0⃗. (2.30)

• The components of the vector product are calculated as follows.

c⃗ = a⃗× b⃗ (2.31)

with cxcy
cz

 =

axay
az

×

bxby
bz


=

ay bz − az byaz bx − ax bz
ax by − ay bx

 (2.32)

• The following 3-d determinant yields the same result

c⃗ =

∣∣∣∣∣∣
êx êy êz
ax ay az
bx by bz

∣∣∣∣∣∣ (2.33)

Evaluating a determinant means subtracting the sum of the
“left-hand diagonal products“ from that of the “right-hand di-
agonal products”.

• Numerical example

a⃗ =

 42
−1

 ; b⃗ =

 3−2
2

 ↪→

a⃗× b⃗ =

 4− 2−3− 8
−8− 6

 =

 2
−11
−14


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• Practical application: Let us assume that a force F⃗ pulls on a
lever arm r⃗ (e. g., the weight of a mass on a scale beam). The
resulting torque is

M⃗ = r⃗× F⃗

The vector of the torque points along the axis of the balance.
The balance is in equilibrium, if the torques exerted by the two
weights have the same absolute value and point in opposite
directions,∣∣∣M⃗l

∣∣∣ = ∣∣∣M⃗r

∣∣∣
rl Fl sinϕ = rr Fr sin (π− ϕ) = rr Fr sinϕ

rl Fl = rr Fr

Since the angle ϕ between lever beam and weight force is the
same on both sides, the equilibrium exists for any orientation
of the lever beam.

r⃗l

F⃗l

ϕ
r⃗r

F⃗r

2.3 Concluding Remarks

• Dividing of vectors is not permitted!No dividing of vectors!

• All the vector operations with the exception of the vector prod-
uct can be transferred to spaces of other dimensions (2-d, 4-d,
5-d, etc.). The vector product is only defined in three dimen-Vector product only in 3-d
sions.



3 Elementary Functions, Complex Numbers, Power Series
Expansion of Functions

3.1 What is a Function?

A function f : x → f(x) = y is defined as a unique assignment of a
dependent variable or function value y to an independent variableIndependent variable(s)
x by a calculation rule. This can be generalized:and function value

A quantity y is a function of one (or several) variable(s) x (or x1,x2,
. . . ,xN), if one unique value of y can be assigned to any value of xUniqueness!
(or any combination x1,x2, . . . ,xN, respectively).

Remark: The symbols denoting the independent and the dependent
variable are arbitrary. Often, but by no means always, the letters
x and y are used. Also the formal symbol f for the function can be
replaced, e. g., by the dependent variable, y = y(x).

Examples

1. Perimeter p of a circle as a function of the radius r,

p = p(r) = 2πr

in general

y = f(x)

2. Conversion of the temperature from centigrade (C) to degrees
Fahrenheit (F),

F = F(C) = 32+
9

5
C

in general

y = f(x)

3. Pressure p of an enclosed quantity of gas of 1 mol as a func-
tion of the available volume V and the absolute temperature T
according to the ideal gas law,

p = p(V,T) = R
T

V

in general

y = f(x1,x2)

R is the universal gas constant, a natural constant, hence not a
variable [R = 8,3143 J/(K · mol)].
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4. Volume of a liquid transported through a thin capillary accord-
ing to Hagen-Poiseuille’s law (which applies to laminar, i. e.,
not turbulent, flows),

V = V(∆p,l,r,t) =
π

8η

∆p

l
r4 t

in general

y = f(x1,x2,x3,x4)

η denotes the viscosity of the liquid (here assumed constant),
∆p the pressure difference between the ends of the capillary,
and l and r its length and radius, respectively.

3.2 Representations of a Function

3.2.1 Table

The result of any experiment is a table (today usually stored elec-
tronically as a data file in the control computer). Examples

1. Temperature conversion from centigrade (◦C) to ◦F,

F = F(C) = 32+
9

5
C

variable C (◦C) 5 10 15 20 25 30 35
function value F (◦F) 41 50 59 68 77 86 95

0 −5 −10 −15 −20 −25 −30 −35
32 23 14 5 −4 −13 −22 −31

◦F

◦C−30 −20 −10 10 20 30

−60

−40

−20

20

40

60

2. Pressure of an enclosed quantity of 1 mol of a gas as a function
of the volume under isothermal conditions (i. e., for T = const.;
here specifically T = 361 K). For T = const., the ideal gas law
reduces to Boyle-Mariotte’s law,

p = p(V) = R
T

V

variable V (l) 6 7. 5 10 15 30 60 300
function value p (bar) 5 4 3 2 1 0,5 0,1

V (l)

p (bar)

10 20 30 40 50

1

2

3

4
T = 361 K

1 mol

Remark: Independent variables which are kept constant in a func-
tion (such as the temperature in the last example) are dubbed param-
eters. For different values of a parameter, the graph of a functionParameter(s)
(see below) consists in a set of curves.

• Advantage of the representation as a table: Easy to use; func-
tion values are immediately present without calculation

• disadvantage: Interpolation required for intermediate values.

3.2.2 Graphical Representation

The dependent variable is plotted versus the independent one in a 2-
d diagram. This yields the graph or curve of the function. Examples
are shown above. In the case of two independent variables, the
graph of the function is an expanse in a 3-d diagram. The graphical
plot has several advantages:
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• Continuous representation showing the overall behavior at one
glance

• no interpolation required.

If the independent variable and/or the function value varies (vary)Logarithmic
over several orders of magnitude, a semi- or double-logarithmic plotrepresentation
is often more appropriate than a linear one. Here either one coordi-
nate axis (→ semi-logarithmic plot) or both (→ double-logarithmic
plot) is (are) not marked linearly but logarithmically, i. e., powers of
10 are positioned at equal distances on an axis. This has the advan-
tage that the respective variable(s) can be plotted with constant rel-
ative accuracy. The example on the margin shows Boyle-Mariotte’s
law for ideal gases, p = p(V) = RT/V, for T = 361 K in a double-
logarithmic (or double-log) plot. A power law such as p ∝ 1/V = V−1

always yields a straight line in double-log representation, its slopeV (l)

p (bar)

1 10 102 103 104

10−2

10−1

1

10
T = 361 K

1 mol

being equal to the exponent of the power law (here, −1).

3.2.3 Analytical Representation

A function being given in analytical representation means that there
is an equation, i. e., a mathematical operation connecting indepen-
dent variable and function value. Examples are

y = a+ x addition
y = bx multiplication
y = x2 square
y =

√
x square root

y = ax exponential function with arbitrary base a > 0
y = ex = exp (x) expon. funktion with base e = 2,71828182 . . .

(Euler’s number; see below)
y = loga x common logarithm to an arbitrary base a > 0
y = lg x logarithm to the base 10
y = ln x natural logarithm (base e)
y = sin x etc. sine (and other trigonometric functions)
y = arcsin x etc. arc sine (and other arc functions)

Analytical function equations usually contain combinations of sev-
eral elementary functions, such as

y = a sin(bx) exp(−cx) + d

y =
sin x

x
+ x3

The analytical representation of a function is obtained from a theory.

3.2.4 Symbolic Representation

The symbolic representation can be used, if the analytical form of
a function is either unknown or unfavorable (e. g., if the equation
connecting variable and function value is very complicated). It has
already been used,

y = f(x) y = f(x)

y = y(x)

p = p(V)

F = F(x)
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or, in the case of more than one variable,

p = p(V,T)

y = y(x1,x2, . . . ,xn)

g = g(u1,u2, . . . ,un)

3.3 Some Elementary Functions

3.3.1 Linear Function

1. Special case

y = ax with a = const. (3.1)

y is proportional to x. a is the proportionality factor; it deter-
mines the slope of the corresponding straight line,

a =
y

x
= tanα (3.2)

The slope of a straight is constant, i. e., the same for all pairs
of values x and y. In this special case the straight runs through
the origin.x

y

α

O

y

x

2. General case

y = ax+ b with a,b = const. (3.3)

Here we have

a =
y− b

x
= tanα or (3.4)

a =
y2 − y1
x2 − x1

= tanα (3.5)

for all pairs of values (x1,y1), (x2,y2).x

y

α

O x1 x2

b

y1

y2

Note

a > 0 the straight points upward
a = 0 the straight runs horizontally
a < 0 the straight points downward.

3.3.2 Square Function; Parabola

1. Special case

y = ax2 with a = const. (3.6)

describes a parabola with its apex at the origin. The prefactor
a determines its steepness.

x

y
a > 0

2. General case

y = ax2 + bx+ c with a,b,c = const. (3.7)

With the square complement, we can always cast this function
in the form

y− y0 = a (x− x0)
2 (3.8)
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with

x0 = −
b

2a
; y0 = c−

b2

4a
(3.9)

Hence, it describes a parabola with its apex at (x0;y0).

x

y

x0

y0

a > 0

Note

a > 0 the parabola opens upward
a = 0 the function graph is a straight line
a < 0 the parabola opens downward

x

y

x0

y0

a < 0

3. Example: Free fall

A free falling mass subject to gravity (disregarding its air resis-
tance) moves according to the equation

s(t) =
1

2
gt2

where g = 9,81 m/s2 denotes the gravitational acceleration (ac-
celeration of free fall). Inserting the time t in seconds after
dropping the mass yields the distance s(t) in meters covered by
it. The above expression can be calculated for negative times as
well; meaningful in terms of physics, however, is only the range
t ⩾ 0. Hence, when evaluating mathematical expressions, al-
ways keep their real-world meaning in mind!

t (s)

s (m)

1 2 3

10

20

30

40

3.3.3 Hyperbola

A hyperbola is described by the equation

y =
a

x
= ax−1 (3.10)

y is inversely proportional to x. An example is Boyle-Mariotte’s
isothermal law for ideal gases mentioned above

p(V) = R
T

Vx

y

3.3.4 General Power Law

All the functions discussed so far

y = ax

y = ax2

y =
a

x
= ax−1

are special cases of the general power law
x

y

1

1

n = 10 2
1

0,5

0,1

a = 1
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y = axn (3.11)

with a and n being arbitrary constants.

For negative exponents we can write

ax−n =
a

xn
(3.12)

The graphs plotted on the margin belong to the prefactor a = 1. All
of them run through the point (1; 1).

x

y

1

1

−2 −10 = n

n = −0,5

−1

a = 1

3.3.5 Exponential Function

In an exponential function, the variable x is in the exponent of an
arbitrary positive number, the base a

y = ax with a > 0 (3.13)

A negative sign in the exponent yields

a−x =
1

ax
=

(
1

a

)x

(3.14)

i. e., replacing the base with its reciprocal corresponds to mirroring
the function graph on the y axis.x

y

1

a = 1/2 10 3 2

• Calculation rules for exponential functions,

ax1 · ax2 = a(x1+x2) (3.15)

ax1

ax2
= a(x1−x2) (3.16)

(ax1)x2 = a(x1·x2) (3.17)

a0 = 1 (3.18)

a1 = a (3.19)

Consequence: All the graphs of simple exponential functions
(without a pre-factor) run through the point (0; 1).

• Of particular importance is the exponential function which has
Euler’s number e as base

Euler’s number 2.718 . . .

y = ex = exp (x) mit

e = lim
n→∞

(
1+
1

n

)n

= 2,71828182846 . . . (3.20)

The reasons will become clear in Chapters 4, 5, and 6.

3.3.6 Inverse Function

• We start with an arbitrary function y = f(x) which has x as
independent variable. Now we can ask: Is it also possible to
express x as a function of y, and how is the functional relation?

• Therefore we solve for x,

x = F(y) (3.21)
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• The names of the variables are unimportant; hence, we ex-
change x and y in Eq. (3.21), dubbing the independent variable
x again,

y = F(x) (3.22)

Then F is called the inverse function to f.

x

y
y = x2

• When calculating an inverse function, keep in mind, however,
that the assignment F : x→ F(x) must be unique, as is required
for any function. Hence, if the uniqueness is not fulfilled, part
of the co-domain must be excluded.

• Example

y = f(x) = x2

To every x, one unique y is assigned, but there are two val-
ues of x to every y, viz. x1 = +

√
y and x2 = −

√
y. After ex-

changing x and y, we must restrict the co-domain to one of the
two branches of the horizontal parabola. Usually, the positive
branch is chosen.

x

y y = +
√
x

y = −
√
x

• The graphs of the original function f and its inverse F are trans-
formed into each other bymirroring on the bisectrix of the first
and third quadrant.

• Other examples

original function y = ax+ b y = xn y = ax

inverse function y = (x− b)/a y = n
√
x y = loga x

3.3.7 Logarithm

The logarithm function F(x) = loga x is the inverse of the exponential
function f(x) = ax to the base a > 0. This means, the logarithm
loga x is the exponent required for a to yield x. Of particular impor-
tance are the logarithm to the base 10,

y = log10 x = lg x (3.23)

and the logarithm to the base e,

y = loge x = ln x (natural logarithm) (3.24)

The special meaning and importance of the natural logarithm y = ln x
will also become clear in Chapters 4, 5, and 6.

x

y

1

1

10x ex

lnx

lgx

• Some numerical examples of the logrithm lg x to the base 10

10−1 = 0,1 ↔ −1 = lg 0,1
100 = 1 ↔ 0 = lg 1
101 = 10 ↔ 1 = lg 10
102 = 100 ↔ 2 = lg 100
100,5 = 3,1623 ↔ 0,5 = lg 3,1623
101,5 = 31,623 ↔ 1,5 = lg 31,623
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• General calculation rules for logarithms (valid for any base a)

loga (x1 · x2) = loga x1 + loga x2 (3.25)

loga

(
x1

x2

)
= loga x1 − loga x2 (3.26)

loga
(
xx21
)
= x2 · loga x1 (3.27)

loga 1 = 0 (3.28)

loga a = 1 (3.29)

loga x =
1

lna
· ln x (3.30)

loga x =
1

lga
· lg x (3.31)

3.3.8 Trigonometric functions

The four basic trigonometric functions sine (sin x), cosine (cos x), tan-
gent (tan x), and cotangent (cot x) have already been introduced in
Section 1.1.3 and depicted on the unit circle. They are periodic with
period 2π (sine and cosine) or π (tangent and cotangent), respec-
tively.

x

y

−1

1

π

2π

3π

y = sinx

• The following important calculation rules apply

sin2 x+ cos2 x = 1 (from Pythagoras’s law) (3.32)

tan x =
sin x

cos x
(3.33)

cot x =
1

tan x
(3.34)

1+ tan2 x =
1

cos2 x
(3.35)

1+ cot2 x =
1

sin2 x
(3.36)x

y

−1

1

π/2

3π/2

5π/2

y = cosx

• Periodicities

sin (x+ k · 2π) = sin x (3.37)

cos (x+ k · 2π) = cos x (3.38)

tan (x+ k · π) = tan x (3.39)

cot (x+ k · π) = cot x (3.40)

k can be any whole number including zero.

x

y

−1

1

π/2 3π/2 5π/2 7π/2

y = tanx

• Small angles: For small arguments x (|x| ≪ 1 in radians) we can
approximate

sin x ≈ tan x ≈ x (3.41)

cos x ≈ 1− 1
2
x2 (3.42)

The proof will be given in Section 3.5.5.

• Addition theorems: Numerous other relations of the trigono-
metric functions—the functions of sums, differences, multiples,
or fractions of arguments, or the expression of one trigonomet-
ric function by another—are comprised by the addition theo-
rems. They can be derived with the complex exponential func-
tion, as will be demonstrated in Section 3.4.8. You find them
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in the standard formularies of mathematics (e. g., Bronstein-
Semendjajew, Taschenbuch der Mathematik, publisher Harri
Deutsch).

x

y

−1

1

π 2π 3π

y = cotx

3.3.9 Inverse Trigonometric Functions (Arc Functions)

Arc functions and trigonometric functions are inverse to each other,

y = arcsin x ↔ y = sin x
y = arccos x ↔ y = cos x
y = arctan x ↔ y = tan x
y = arccot x ↔ y = cot x

The arc functions are sometimes written y = sin−1 x = arcsin x etc.
It is important to keep in mind that in conjunction with the trigono-
metric functions, the exponent −1 does not denote the reciprocal
value but the inverse function!

Due to the periodicities of the trigonometric functions, the values of
the arc functions would not be unique. Hence, their co-domains are
restricted to the following principal values

x

y

−1 1

−1

1

y = sinx

y = arcsinx

−
π

2
⩽ arcsin x ⩽ +

π

2
(3.43)

0 ⩽ arccos x ⩽ π (3.44)

−
π

2
⩽ arctan x ⩽ +

π

2
(3.45)

0 ⩽ arccot x ⩽ π (3.46)
x

y

−π/2

π/2

−π/2 π/2

y = tanx

y = arctanx

3.4 Complex Numbers

3.4.1 Motivation: Quadratic Equation

The quadratic equation reads

ax2 + bx+ c = 0 (3.47)

Its general solution can be derived with the square complement and
comprises the two values

x1,2 =
−b±

√
b2 − 4ac

2a
(3.48)

Obviously, in the realm of real numbers there is no solution in the
case 4ac > b2, since the square-root of a negative number is not
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defined. Consequence: One introduces a new, extended system of
numbers, in which the quadratic equation always has solutions. The
real numbers should be a sub-set of this new system and, to avoid
contradictions, the usual calculation rules should remain valid1.

3.4.2 Imaginary Unit

Symbolically, we introduce a number i (“imaginary unit”), which, by
definition, has the square −1,

i2 = −1; so, i =
√
−1 (3.49)

All the numbers which are the product of a real number and i, are

i =
√
−1

dubbed imaginary numbers, e. g.,
√
−9 =

√
−1 ·

√
9 = 3i

All the numbers which are the sum of a real and an imaginary com-
ponent, are then dubbed complex numbers,

z = a+ bi; a, b real (3.50)

a is the real part, b the imaginary part of z. Note: The factor i does
not belong to the the imaginary part. Real and imaginary part are
real numbers!

3.4.3 The Basic Arithmetic Operations in the Complex World

Since the calculation rules of the real numbers apply, the basic arith-
metic operations can easily be performed,

• addition, subtraction

z1 ± z2 = (a1 + ib1)± (a2 + ib2)

= (a1 ± a2) + i · (b1 ± b2) (3.51)

• multiplication

z1 · z2 = (a1 + ib1) · (a2 + ib2)
= a1a2 + i (a1b2 + a2b1) + i

2b1b2

= (a1a2 − b1b2) + i · (a1b2 + a2b1) (3.52)

• division
z1

z2
=
a1 + ib1
a2 + ib2

(3.53)

To calculate real and imaginary part of the quotient z1/z2, use
the following trick: Enlarge the fraction with z∗ = a2−ib2. This
renders the denominator real,

z1

z2
=

(a1 + ib1) · (a2 − ib2)
(a2 + ib2) · (a2 − ib2)

=
(a1a2 + b1b2) + i (a2b1 − a1b2)

a22 + b
2
2

=
a1a2 + b1b2
a22 + b

2
2

+ i · a2b1 − a1b2
a22 + b

2
2

(3.54)

1 There is one exception, however; see Section 3.4.10.
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Two complex numbers are equal, if their real and their imaginary
parts are equal,

z1 = z2 ↔ a1 = a2 und b1 = b2
z = 0 ↔ a = b = 0.

3.4.4 Geometrical Representation: The Complex Plane

• The real numbers are close lying points on the real number line.
Usually it is plotted horizontally.−2 −1 0 1 2

• In a similar way, the purely imaginary numbers can be arranged
on an imaginary number line. It is plotted vertically.

−2i

−i

0

i

2i

• The two lines can be plotted in a single diagram. They must
intersect at the point zero, the only number they have in com-
mon. Then they are the axes of a two-dimensional vector space,
the complex plane. Any point or position vector in this plane
corresponds to a complex number. Its real and imaginary part
are obtained as the projections onto the two axis, as usual.

−2 −1 1 2

−2i

−i

i

2i

Re

Im za

b

• Addition and subtraction of two complex numbers correspond
to addition and subtraction of the corresponding vectors in the
complex plane, respectively (cf. Section 2.2). On the other
hand: Multiplication and division of complex numbers cannot
be reconciled with operations in a usual 2-d vector space. The
complex multiplication has nothing to do with the scalar prod-
uct (which yields a scalar, not a vector) or the vector product
(which is only defined in three dimensions). Dividing two vec-
tors is not permitted anyway.Re

Im

z1

z2

z1 + z2

3.4.5 Representation in Polar Coordinates

As we have learned in Section 1.2, points in a plane cannot only be
defined with Cartesion coordinates, but with polar coordinates as
well. This is also valid (and very useful!) for complex numbers,

Re

Im za

b
r

ϕ

z = a+ bi (3.55)

= r · cosϕ+ r · sinϕ · i (3.56)

= r · (cosϕ+ i sinϕ) (3.57)

= r · eiϕ (3.58)
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We call

r =
√
a2 + b2 the absolute value of z (3.59)

ϕ = arctan

(
b

a

)
the phase2 of z (3.60)

The relation

Absolute value and phase

cosϕ+ i sinϕ = eiϕ (3.61)

will be proven in Section 3.5.5.→ Section 3.5.5

Note: Equation (3.61) has the consequence∣∣eiϕ∣∣ = 1 (for ϕ real) (3.62)

i. e., all the number eiϕ are located on the unit circle.

With polar coordinates it is easy to demonstrate the meaning of mul-
tiplication, division, and the calculation of powers and roots of com-
plex numbers,

• multiplication

z1 · z2 = r1 eiϕ1 · r2 eiϕ2

= r1 · r2 · ei(ϕ1+ϕ2) (3.63)

(multiply absolute values, add phases)

Re

Im

z1

z2

z1 · z2

r1

r2
r1 · r2

ϕ1

ϕ2
ϕ1 +ϕ2

• division

z1

z2
=
r1 e

iϕ1

r2 eiϕ2

=
r1

r2
· ei(ϕ1−ϕ2) (3.64)

(divide absolute values, subtract phases)

• powers

zn =
(
r eiϕ

)n
= rn · einϕ (3.65)

(raise the absolute value to the power, multiply the phase with
the exponent)

• roots

n
√
z =

(
r eiϕ

)1/n
= n

√
r · eiϕ/n (3.66)

(calculate the root of the absolute value, divide the phase by
the root index; but see also the following Section 3.4.6)

2 See the footnote on p. 8.
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3.4.6 Powers and Roots of i

• Since |i| = 1, all the powers and roots of i are located on the
unit circle and can be written as eiϕ. Hence, we need to discuss
only their phases ϕ. i has the phase π/2; hence

i = eiπ/2 phase π/2 (3.67)

i2 = eiπ = −1 phase π (3.68)

i3 = ei3π/2 = −i phase 3π/2 (3.69)

i4 = ei2π = 1 phase 2π (3.70)

i5 = ei5π/2 = i phase 5π/2 (or π/2) (3.71)

Re

Im

1

i

−1

−i

√
i

√
i

• i has two square-roots with the phases π/4 and 5π/4, respec-
tively,

Re

Im

1

i

−1

−i

3
√
i (√

i
)
1
= eiπ/4 =

1+ i√
2

phase π/4 (3.72)(√
i
)
2
= ei5π/4 =

−1− i√
2

phase 5π/4 (3.73)

• Note: Any complex number (except zero) has two square-roots,
three cubic roots, four fourth roots, and—in general—n roots
with index n. These are located on a regular polygon with n
corners, centered around zero. The reason is that the phase of
a complex number is not unique but can only be determined
modulo 2π. The nth roots of a number with phase ϕ have the
phases (ϕ + 2kπ)/n mit k = 0,1,2, . . . ,n − 1. The plots on the
margin show the three cubic roots and the five 5th roots of i as
an example.Re

Im

1

i

−1

−i
5
√
i

3.4.7 Phasor Diagrams

The relation between voltage and current in electronic elements in
ac circuits, e. g., solenoids and capacitors, is often illustrated with
so-called phasor diagrams. Voltage and current are plotted as vec-
tors (or “phasors”) in a plane with the absolute values Um and Im
corresponding to maximum voltage and current, respectively. Their
starting points lie in the coordinate origin; the angle between them
represents the phase shift ϕ between voltage and current. The two
vectors rotate together in the plane with the angular frequency ω of
the ac voltage. The sketch shows the phasor diagram of a capacitor
with ϕ = π/2 as an example.Re

Im
Û(t)

Um

Î(t)

Im

ωt
ωt+ϕ

• The phasor diagrams can now easily be understood as repre-
sentations of voltage and current in the complex plane,

Û(t) = Um · exp (iωt) voltage (3.74)

Î(t) = Im · exp [i (ωt+ ϕ)] current (3.75)
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• The physical values of voltage and current at any instant of
time are the real parts of the complex numbers, i. e., their
projections onto the real axis,

U(t) = Um · cos (ωt) (3.76)

I(t) = Im · cos (ωt+ ϕ) (3.77)

• The quotient Ẑ = Ûm/Îm = (Um/Im) · e−iϕ is the complex ac
impedance of the corresponding element. It contains both the
absolute value of the impedance or resistance (|Ẑ| = Um/Im)
and the phase shift ϕ.

3.4.8 Addition Theorems

The addition theorems describe relations between the trigonometric
functions. They can be easily derived with the aid of the complex
exponential function. As an example, let us express the sine and
cosine value of a sum or difference of two angles by the functions of
the single arguments,

sin (α± β) = ? (3.78)

cos (α± β) = ? (3.79)

The complex exponential function is expanded

ei(α±β) = cos (α± β) + i sin (α± β) (3.80)

and, on the other hand,

ei(α±β) = eiα e±iβ

= (cosα+ i sinα) · (cosβ± i sinβ)
= cosα cosβ∓ sinα sinβ+ i (sinα cosβ± cosα sinβ)

(3.81)

The comparison of the imaginary and real parts of Eqs. (3.80) and
(3.81) yields the addition theorems,

sin (α± β) = sinα cosβ± cosα sinβ (3.82)

cos (α± β) = cosα cosβ∓ sinα sinβ (3.83)

3.4.9 Conjugate Complex Number

We start with an arbitrary complex number,

z = a+ bi (3.84)

Its conjugate complex number

z∗ = a− bi (3.85)

is defined as the number with the same real part and the negative
imaginary part of z (b → −b). Geometrically, this corresponds to
mirroring on the real axis.

Re

Im
z

z∗

a

b

−b

• Note: We have

z · z∗ = (a+ bi) · (a− bi) = a2 + b2 = r2 (3.86)
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(real). We have made use of this trick already in performing
the complex division [Gl. (3.54)]. Then we can calculate the
absolute value r of a complex number as

r =
√
z · z∗ r =

√
z · z∗ (3.87)

• Furthermore we have

Re(z) = a =
1

2
(z+ z∗) (3.88)

Im(z) = b =
1

2i
(z− z∗) (3.89)

3.4.10 Comparing Operations

Attention: Comparing operations (<, >, ⩽, ⩾) cannot be used in the
realm of complex numbers, since they would give rise to contradic-
tions. Hence, it is not possible to decide, e. g., whether i < 1 or<, > etc. not permitted!
i > 1 holds. Only real quantities such as absolute values, real and
imaginary parts can be compared.

3.4.11 So Why Complex Numbers?

We have introduced the complex numbers in Sections 3.4.1 and 3.4.2
for the—a priori formal—purpose of being able to solve the quadra-
tic equation in all cases, i. e., to calculate the square-root of a nega-
tive number. With the polar-coordinate representation in the com-
plex plane it is now straightforward to see, why and how this works.

Positive real numbers have the phase 0 or 2π, so their square-roots
have 0 or π and are located on the real axis as well. The square-root
of a negative number (with phase π or 3π), on the other hand, has
π/2 or 3π/2 and sits on the imaginary axis.

The phase is, in general, an important parameter of complex num-
bers, since it defines the phase or phase difference of phenomena
in physics—in particular of those with periodic behavior. In Section
3.4.7 we have discussed the phase shift between current and voltage
in ac circuits as an example. Another important example is the phase
shift between momentary elongation and excitation in driven oscil-
lations. It depends on the excitation frequency and can be calculated
with the complex exponential function in an elegant and easy way.

3.5 Power Series Expansion of Functions

3.5.1 Motivation

An amateur astronomer plans to grind the primary mirror for her
new back-yard telescope. Diameter D and radius of curvature R of
the mirror are given. She calculates the maximum depth, to which
the spherical surface must be ground into the glass blank (the so-
called sagitta h).

• Pythagoras’s law holds that

(R− h)2 +

(
D

2

)2
= R2 (3.90)
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Solving for the sagitta h yields

h = R ·

(
1−

√
1−

D2

4R2

)
(3.91)

or

h

R
= 1−

√
1−

a2

4
with a =

D

R
(3.92)

The dimensionless quantity a describes the relation between
diameter and radius of curvature of the mirror.

·

R R− h

D/2 h

• In small amateur telescopes, mainly primary mirrors of long
focal length are used, i. e., D ≪ R or a ≪ 1. In this limit,
Eq. (3.92) can be well approximated by the following simpler
expression

h

R
≈ a2

8
(3.93)

The approximation becomes better for smaller3 a,

a 0.1 0.3 0.7 1.0 1.5
h/R (exact) 0.00125 0.01131 0.0633 0.134 0.339

a2/8 0.00125 0.01125 0.0613 0.125 0.281

• The approximation a2/8 is the first term of the power series
expansion of the exact formula [Gl. (3.92)]. It can be improved
by adding more terms with higher powers of a.

3.5.2 Series and Power Series

• In mathematics, a series is a sum of terms, e. g.,

s = a0 + a1 + a2 + · · ·+ an + · · · (3.94)

or, using the sum sign,

s =

∞∑
n=0

an (3.95)

The series in this example contains an infinite number of terms.

• Steady functions f(x) can usually be written as a power series
(also called Taylor series) of their independent variable x,

f(x) = a0 + a1x+ a2x
2 + · · ·+ anxn + · · · (3.96)

or, with the sum sign,

f(x) =

∞∑
n=0

anx
n (3.97)

The definition of the term “steadiness” and further formal pre-
requisites for the applicability of the power series expansion
are given in the textbooks of mathematics.

Expansion around x0 = 0

3 The primaries used in small amateur telescopes usually have a values between 0.06
and 0.3.
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• In Eqs. (3.96) and (3.97), the function is expanded around the
point x0 = 0. The expansion can be performed around other
points as well. This is even mandatory, if the function is not
defined at x0 = 0 (or in the vicinity of x0 = 0). For example, the
logarithm and the square-root function are usually expanded
around x0 = 1 as in Eq. (3.92).4 Eqs. (3.96) and (3.97) must
then be generalized to

f(x0 + x) = a0 + a1x+ a2x
2 + · · ·+ anxn + · · · (3.98)

or

f(x0 + x) =

∞∑
n=0

anx
n (3.99)

Defining ξ = x0 + x, we can write alternatively

Expansion around any x0

f(ξ) = a0 + a1 (ξ− x0) + a2 (ξ− x0)
2 + · · ·

+ an (ξ − x0)
n + · · · (3.100)

or

f(ξ) =

∞∑
n=0

an (ξ− x0)
n (3.101)

• The zero-order term is simply obtained as a0 = f(x0). Calculat-
ing the coefficients of the higher orders an with n ⩾ 1 requires
differential calculus; see Section 4.6.2.

• In practical applications, the number of terms to be included in
a power series expansion depends on the required precision. If
a theory is to be compared with experimental data points, for
instance, the power series can usually be truncated when the
remaining error is smaller than the experimental error bars. In
many cases the term of lowest order (or, perhaps, the next one)
is already sufficient.

3.5.3 Factorial

For the following sections we need the factorial (n!). It is defined
for the natural numbers n including zero:n! (“n-factorial”)

0! = 1 (3.102)

1! = 1 (3.103)

2! = 1 · 2 = 2 (3.104)

3! = 1 · 2 · 3 = 6 (3.105)

4! = 1 · 2 · 3 · 4 = 24 (3.106)

.

.

.

n! = n · (n− 1)! for n ⩾ 1 (3.107)

4 This corresponds to the limit a ≪ 1 in Eq. (3.92).
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3.5.4 Power Series of Some Selected Functions

1. Geometrical series

a

1− x
= a

(
1+ x+ x2 + x3 + x4 + · · ·

)
= a

∞∑
n=0

xn (3.108)

(range of convergence, |x| < 1)

All the coefficients are equal here.

2. Natural logarithm

ln (1+ x) = x−
1

2
x2 +

1

3
x3 −

1

4
x4 +

1

5
x5 − · · ·

=

∞∑
n=1

(−1)n+1

n
xn (3.109)

(range of convergence, −1 < x ⩽ +1)

3. Square-root function

√
1+ x = 1+

1

2
x−
1 · 1
2 · 4

x2 +
1 · 1 · 3
2 · 4 · 6

x3

−
1 · 1 · 3 · 5
2 · 4 · 6 · 8

x4 + · · · (3.110)

(range of convergence, |x| ⩽ 1)

Note: In Eq. (3.92) we have x = −a2/4; hence, the approxi-
mation of lowest order [Eq. (3.93)] is quadratic in a. Also the
higher-order terms contain only even powers of a.

4. Exponential function

ex = 1+
1

1!
x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

=

∞∑
n=0

1

n!
xn (3.111)

e−x = 1−
1

1!
x+

1

2!
x2 −

1

3!
x3 +

1

4!
x4 − · · ·

=

∞∑
n=0

(−1)n

n!
xn (3.112)

(range of convergence, |x| <∞)
5. Sine

sin x = x−
1

3!
x3 +

1

5!
x5 −

1

7!
x7 +

1

9!
x9 − · · ·

=

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 (3.113)

(range of convergence, |x| <∞)
The plot shows the exact sine function and its first three ap-
proximations.

x

y

−1

1

π

2π

3π

sinx

x

x− x3/6

x− x3/6+ x5/120
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6. Cosine

cos x = 1−
1

2!
x2 +

1

4!
x4 −

1

6!
x6 +

1

8!
x8 − · · ·

=

∞∑
n=0

(−1)n

(2n)!
x2n (3.114)

(range of convergence, |x| <∞)
7. Tangent

tan x = x+
1

3
x3 +

2

15
x5 +

17

315
x7 +

62

2835
x9 + · · · (3.115)

(range of convergence, |x| < π/2)

The last three expansions are the origin of the approximations ofsin x ≈ tan x ≈ x
the trigonometric functions for small arguments which have beencos x ≈ 1− 1

2x
2

mentioned earlier [Eqs. (3.41) and (3.42)].for |x| ≪ 1

For the power series expansions of more functions see the formu-
laries of mathematics (e. g., Bronstein-Semendjajew, Taschenbuch
der Mathematik, publisher Harri Deutsch).

3.5.5 Euler’s Formulas

A look at the power series of the exponential, the sine, and the cosine
function shows that they all have similar coefficients.

• To see their relationship in more detail, we start with the
power series of the exponential function [Eq. (3.111)] and re-
place its variable x with ix,

eix = 1+
1

1!
ix+

1

2!
(ix)2 +

1

3!
(ix)3 +

1

4!
(ix)4 + · · · (3.116)

• After calculating the powers of i we separate the real and the
imaginary terms

eix = 1−
1

2!
x2 +

1

4!
x4 −

1

6!
x6 + · · ·

+ i ·
(
x−

1

3!
x3 +

1

5!
x5 −

1

7!
x7 + · · ·

)
(3.117)

and, comparing the result with Eqs. (3.113) und (3.114), we see
that

eix = cos x+ i sin x (3.118)

This equation has been used in the polar-coordinate represen-

eix = cos x+ i sin x

tation of complex numbers [Eq. (3.57) and (3.58)].

• In a similar way we can derive

e−ix = cos x− i sin x (3.119)e−ix = cos x− i sin x
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• The equations (3.118) and (3.119) are called Euler’s formulas.
They demonstrate that, for purely imaginary argument, the ex-
ponential function has an oscillatory, i. e., periodic behavior
and assumes solely values on the unit circle in the complex
plane. Hence, it describes vibration and wave phenomena in
an elegant way. See also Sections 3.4.7 and 6.3.→ Sections 3.4.7 and 6.3

• Eqs. (3.118) and (3.119) finally yield

cos x =
eix + e−ix

2
(3.120)

sin x =
eix − e−ix

2 i
= −

i

2

(
eix − e−ix

)
(3.121)



4 Differential Calculus

4.1 Basic Ideas

In Chapters 4 and 5 we discuss the (infinitesimal) calculuswhich com-
prises the two branches differential and integral calculus. Infinitesi-
mal calculus means calculating with indefinitely small numbers. This
is possible and yields meaningful (often finite) results, provided that
the rules are obeyed.

Differentiation and integration are “inverse” operations which can
be applied to functions. Here we will perform the calculus—apart
from a few simple exceptions—only with real functions of one or
several real variable(s). The extension to the whole complex plane
leads to complex analysis, an important field of mathematics.

4.1.1 The Increment

• Let us consider an independent variable x. The variation of x
from a start value x1 to a final value x2 corresponds to an incre-
ment ∆x = x2 − x1. The increment can be positive or negative,∆x = x2 − x1
depending on the relation x2 > x1 or x2 < x1, respectively. The
symbol ∆ in general denotes (finite) increments of variables or∆x, ∆y, etc.
function values.

• For a function y = f(x), an increment in x has the consequence
that also the function value y receives an increment, which can
again be positive or negative, depending on the x values,

y1 = f(x1) (4.1)

y2 = f(x2) (4.2)

and, thus,

∆y = y2 − y1 = f(x2) − f(x1) (4.3)

• In the case of the linear function (straight line), ∆y depends
only on the increment ∆x: ∆y is proportional to ∆x. For all
other functions, ∆y depends on the individual values x1 and x2
as well.

4.1.2 The Difference Quotient

• We have again a given function f : x → f(x) = y, an increment
∆x = x2 − x1 of the variable, and the corresponding increment
∆y = y2 − y1 of the function value. For better comparison of
the increments we divide ∆y by ∆x and obtain the difference
quotient

∆y

∆x
=
y2 − y1
x2 − x1

=
f(x2) − f(x1)

x2 − x1
(4.4)
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• In the case of the linear function (straight line) y = ax + b,
the difference quotient is constant, i. e., the same for all pairs
(x1; x2).

∆y

∆x
= a = const. (4.5)

• For any function, the difference quotient is the average relative
variation of the function value in the interval (x1; x2).x

y

x1 x2

y1

y2

∆x

∆y

y = f(x)
∆y

∆x

• The difference quotient is equal to the slope of the chord (se-
cant) between the points (x1;y1) and (x2;y2) on the function
graph. Except for the straight, it depends on the width of the
interval,

y3 − y1
x3 − x1

̸= y2 − y1
x2 − x1

(4.6)

x

y

x1 x2x3

y1

y2

y3

y = f(x)

• Example from physics: Free falling mass with non-zero start
velocity. A mass which has been thrown vertically with non-
zero start velocity v0 accelerates under the influence of Earth’s
gravity. We want to calculate its fall velocity as a function of
time.

The distance traveled up to time t is

s(t) = v0 t+
1

2
gt2

During the time interval ∆t the mass covers the additional dis-
tance

∆s = s(t+ ∆t) − s(t)

Hence, ∆s/∆t is the average velocity on its way ∆s between s(t)t (s)

s (m)

1 2 3

10

20

30

40

50

60

v0

∆t

∆s

and s(t+ ∆t). It is calculated as

∆s

∆t
=
1

∆t

[
1

2
g(t+ ∆t)2 + v0 (t+ ∆t) −

1

2
gt2 − v0 t

]
= gt+ v0 +

1

2
g∆t

The shorter the time interval ∆t is chosen, the less varies the
average velocity from one interval to the next. Finally, in the
limit ∆t→ 0 it becomes independent of the interval width and
tends to the value gt+ v0, the true fall velocity at time t.

4.1.3 Differential Quotient, Derivative

• To determine the relative variation of a function (i. e., the slope
of its graph) independent of the interval width, we calculate the
limit of the difference quotient for ∆x → 0. We write

dy

dx
= lim

∆x→0

∆y

∆x
= lim

∆x→0

f(x+ ∆x) − f(x)

∆x
(4.7)

or

dy

dx
= y ′(x) = f ′(x) =

df

dx
=
d

dx
f(x) (4.8)

dy

dx
= y ′(x)



4.1 Basic Ideas 39

• dy/dx is called the differential quotient or the derivative of the
function y = f(x) with respect to x (spoken “dy by dx”). In
general, it is again a function of the variable.

• In our example of the free falling mass, the fall velocity at time
t is

v(t) =
ds

dt
= lim

∆t→0

∆s

∆t
= gt+ v0

It increases linearly with time.

4.1.4 Geometrical Meaning of the Derivative

As the interval width of the independent variable tends to zero (∆x→
0), the secant becomes the tangent which touches the function graph
in a single point x0 and has the same slope there. Hence, the deriva-
tive is equal to the slope of the tangent at the point x0 and equal to
the tangent function of its angle α relative to the horizontal.

x

y

α

x0

y0

y = f(x)

dy

dx

∣∣∣∣
x0

4.1.5 Examples

1. Let y(t) be the amount of a substance during a chemical reac-
tion. Then

dy

dt
= ẏ(t)

is the reaction rate, i. e., the rate of generation or consumption
of the substance. Note:

dy

dt
= ẏ(t) temporal derivatives are often denoted ẏ rather than y ′

2. Let Q(T) be the heat content of a sample at the absolute tem-
perature T . Then

dQ

dT
= C(T)

is the heat capacity of the sample at that temperature. By the
way: The heat capacity of one mole (called specific heat) and
its temperature dependence are important quantities in ther-
modynamics and solid-state physics.

3. Let n(t) be the number of individuals of a population (e. g., a
culture of bacteria) at time t. Then

dn

dt
= ṅ(t)

is its growth rate (cf. Section 6.3).

4. The electrical potential around a point chargeQ varies with the
distance r from the charge according to

ϕ(r) =
1

4πϵ0

Q

r

with ϵ0 = 8,8542 · 10−12 As/Vm the permittivity of vacuum, a
universal constant. The electric field strength E⃗ generated by
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the charge is a vector which, for symmetry reasons, points radi-
ally away from, or towards, the charge (depending on its sign).
The magnitude of the field strength is related to the potential
by

E(r) = −
dϕ

dr

We will calculate E(r) in similar way as the free-fall velocity
above,1

E(r) = −
dϕ

dr
= − lim

∆r→0

∆ϕ

∆r

= − lim
∆r→0

1

∆r

Q

4πϵ0

[
1

r+ ∆r
−
1

r

]
= −

Q

4πϵ0
lim
∆r→0

1

∆r

r− (r+ ∆r)

r · (r+ ∆r)

=
Q

4πϵ0
lim
∆r→0

1

r2 + r∆r

=
1

4πϵ0

Q

r2

= Ec(r)

The result is the well-known Coulomb field strength Ec(r) of a
point charge, as expected.

4.1.6 Differentiability

In order for a function f : x → f(x) to be differentiable at point x0,
it must meet two requirements. First, it needs to be continuous
there, and second, its derivative must tend to the same value when
approaching x0 from the left and the right side. This means that its
graph must have no jump and no kink at x0. The function sketched
on the margin is not differentiable at points x1 and x2.

Examples from thermodynamics: Consider again the heat content
Q(T) of a substance in the vicinity of phase transitions.

x

y

x1 x2

y = f(x)

1. Phase transitions of first order: In order to melt or evaporate
a substance, we must supply it with heat, i. e., energy, al-
though its temperature does not change. The consumed energy
is called latent heat (melting heat ∆Qm and heat of evaporation
∆Qv, respectively); it is required for the transition between two
states of matter with different degrees of order. (Also the vari-
ation of the heat content Q with temperature T is, in general,
different above and below the phase transition temperature.)
Hence, the heat capacity C(T) = dQ/dT is not defined at the
melting temperature Tm and the boiling temperature Tv; the
function Q(T) is not differentiable there.

T

Q

}
∆Qm

}
∆Qv

Tm Tv

2. Phase transitions of second order: Ferromagnetic metals such

T

Q

TC

as iron have the property of being ferromagnetic only below
a certain temperature, the Curie temperature TC. For iron,
e. g., it is 770 ◦C (1418 ◦F). At temperatures above TC, the
thermal motion prevents the magnetic moments of the atoms

1 For calculating the components of the vector E⃗ we need partial derivatives; see
Section 4.8.5.
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from aligning and the metal becomes paramagnetic. The heat
content is continuous at the Curie temperature but its deriva-
tive C(T) = dQ/dT changes abruptly. Hence, also in this case
Q(T) is not differentiable at TC.

4.2 Derivatives of Elementary Function

4.2.1 Small Look-Up Table

y(x) = const. y ′(x) = 0 (4.9)

y(x) = xn y ′(x) = nxn−1 (n beliebig) (4.10)

y(x) = sin x y ′(x) = cos x (4.11)

y(x) = cos x y ′(x) = − sin x (4.12)

y(x) = tan x y ′(x) =
1

cos2 x
(4.13)

y(x) = cot x y ′(x) = −
1

sin2 x
(4.14)

y(x) = ex y ′(x) = ex (4.15)

y(x) = ax y ′(x) = lna · ax (4.16)

y(x) = ln x y ′(x) =
1

x
(4.17)

y(x) = loga x y ′(x) =
1

lna
· 1
x

(4.18)

4.2.2 Examples

y(x) = x y ′(x) = 1 (4.19)

y(x) = x2 y ′(x) = 2x (4.20)

y(x) =
1

x5
= x−5 y ′(x) = −5x−6 = −

5

x6
(4.21)

y(x) =
√
x = x1/2 y ′(x) =

1

2
x−1/2 =

1

2
√
x

(4.22)

y(x) =
1√
x
= x−1/2 y ′(x) = −

1

2
x−3/2 = −

1

2
√
x3

(4.23)

y(x) =
3
√
x5 = x5/3 y ′(x) =

5

3
x2/3 =

5

3

3
√
x2 (4.24)

4.2.3 Three Illustrative Proofs

In most cases, mathematical proofs are omitted in the present tuto-
rial. Only three simple examples are given to illustrate the general
procedure.

1. Power Function with Positive Integer Exponent: y = xn

dy

dx
= lim

∆x→0

(x+ ∆x)n − xn

∆x

= lim
∆x→0

1

∆x

[
xn + nxn−1∆x+

n(n− 1)

2
xn−2(∆x)2

+ · · · − xn
]
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= nxn−1 + lim
∆x→0

n(n− 1)

2
xn−2∆x+ · · ·

= nxn−1

Expanding the bracket (x+∆x)n yields terms of the form xn−k

(∆x)k; k = 0, . . . ,n with their pre-factors. Dividing by ∆x and
subsequently performing the limit ∆x → 0 cancels all terms
with k ⩾ 2.

2. Natural logarithm: y = ln x

dy

dx
= lim

∆x→0

ln(x+ ∆x) − ln x

∆x

= lim
∆x→0

1

x

ln (1+ ∆x/x)

∆x/x

=
1

x
lim

∆x→0

(
∆x

x

)−1
[
∆x

x
−
1

2

(
∆x

x

)2
+
1

3

(
∆x

x

)3
−
1

4

(
∆x

x

)4
+ . . .

]

=
1

x

In the third line we used the power series expansion of the ln
function; see Section 3.5.4. The quadratic and all higher orders
of the series cancel again in the limit ∆x→ 0.

3. Exponential function: y = ex

ex = 1+
1

1!
x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

dy

dx
= 0+ 1+

2

2!
x+

3

3!
x2 +

4

4!
x3 +

5

5!
x4 + · · ·

= 1+
1

1!
x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

= ex

Differentiation of the power series yields zero for the constant
term 1. In an infinite series this does not matter: Every term
of the original series is also present in the derivative.

4.3 Rules for Composite Functions

4.3.1 Sum Rule

f(x) = g(x) + h(x) f ′(x) = g ′(x) + h ′(x) (4.25)

or

y = u+ v y ′ = u ′ + v ′ (4.26)

4.3.2 Constant Pre-Factor

f(x) = c · g(x) f ′(x) = c · g ′(x) (4.27)
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or

y = c · u y ′ = c · u ′ (4.28)

4.3.3 Combination of 4.3.1 und 4.3.2

f(x) = c1 · g(x) + c2 · h(x) f ′(x) = c1 · g ′(x) + c2 · h ′(x) (4.29)

or

y = c1 · u+ c2 · v y ′ = c1 · u ′ + c2 · v ′ (4.30)

This intuitive rule for derivatives has already been applied in the last
proof of Section 4.2.3.

4.3.4 Product Rule

f(x) = g(x) · h(x) f ′(x) = g ′(x) · h(x) + g(x) · h ′(x) (4.31)

or

y = u · v y ′ = u ′ · v+ u · v ′ (4.32)

similarly for more than two factors,

y = u · v ·w y ′ = u ′ · v ·w+ u · v ′ ·w+ u · v ·w ′ (4.33)

etc.

4.3.5 Quotient Rule

f(x) =
g(x)

h(x)
f ′(x) =

h(x)g ′(x) − g(x)h ′(x)

[h(x)]2
(4.34)

or

y =
u

v
y ′ =

vu ′ − uv ′

v2
(4.35)

The correct order in the numerator is easy to remember this way:
Write the undifferentiated function h(x) squared in the denominator
and—unsquared and multiplied with g ′(x)—as the first term of the
numerator.

4.3.6 Derivative of the Reciprocal Function

f(x) =
1

h(x)
f ′(x) = −

h ′(x)

[h(x)]2
(4.36)

or

y =
1

v
y ′ = −

v ′

v2
(4.37)

This is a special case of the quotient rule (see above).



44 4 Differential Calculus

4.3.7 Chain Rule

Consider a composed function of the form

f(x) = g [h(x)] (4.38)

or

f(x) = g(y) with y = h(x) (4.39)

Its derivative is

f ′(x) =

[
d

dy
g(y)

]
·
[
d

dx
h(x)

]
= g ′(y) · h ′(x) (4.40)

Both the outer function g(y) and the inner function y = h(x) are
differentiated with respect to their respective arguments, and theDon’t forget the
results are multiplied.inner derivative!

Example

f(x) = cos2 x = (cos x)2 = y2 with y = cos x

f ′(x) = 2y · (− sin x) = −2 sin x cos x = − sin(2x)

The last step −2 sin x cos x = − sin(2x) is one of the addition theo-
rems for trigonometric functions; it is not related to the derivative
and the chain rule.

4.4 Derivative of the Inverse Function

• Let two functions f and F be inverse to each other, i. e.,

y = f(x) (4.41)

and

x = F(y) (4.42)

• We differentiate both sides of Eq. (4.42) with respect to x. Left-
hand side

d

dx
x = 1 (4.43)

right-hand side (using the chain rule)

d

dx
F(y) =

dF

dy
· df
dx

(4.44)

• Equating the right-hand sides of Eqs. (4.43) and (4.44) yields

df

dx
=

1
dF

dy

(4.45)

or

dy

dx
=

1
dx

dy

(4.46)
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• The derivative of the inverse function F(y) is reciprocal to the
derivative of the original function f(x) and vice versa. This con-
firms the previous result that the graphs of the two funcitons
are related by mirroring on the bisectrix of the 1st and 3rd quad-
rant.

• We can—as usual—rename F’s variable x, but then we must
keep in mind that the derivatives of f and F, which are related
by Eq. (4.45), have to be calculated at different points of the x
axis. The sketch on the margin depicts this. A pair of variables
[x0; f(x0)] are indicated on both of its axes.

x

y F(x)

f(x)

x0

x0

f(x0)

f(x0)

df

dx

∣∣∣∣
x0

=
1

dF

dx

∣∣∣∣
f(x0)

(4.47)

• Example

y = f(x) = ln x i. e., x = F(y) = ey; x ′ = ey

y ′ =
1

ey
=
1

elnx
=
1

x

the well-known result.

4.5 Examples

4.5.1 Sum Rule and Constant Pre-Factor

y = x3 + 7x2 − 3x− 2

y ′ = 3x2 + 14x− 3

y = sin x− cos x

y ′ = cos x+ sin x

4.5.2 Product Rule

y = sin x · cos x
y ′ = sin x · (− sin x) + cos x · cos x = cos2 x− sin2 x

y = ex · sin x
y ′ = ex · cos x+ ex · sin x = ex · (sin x+ cos x)

4.5.3 Quotient Rule

y =
3x

5+ x

y ′ =
(5+ x) · 3− 3x · 1

(5+ x)2
=

15

(5+ x)2

y = tan x =
sin x

cos x

y ′ =
cos x · cos x− sin x · (− sin x)

cos2 x
=
sin2 x+ cos2 x

cos2 x
=

1

cos2 x
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4.5.4 Reciprocal Function

y =
1

1+ x2
i. e., h(x) = 1+ x2

y ′ = −
2x

(1+ x2)
2

4.5.5 Chain Rule

y =
(
x3 + 1

)2
y ′ = 2 ·

(
x3 + 1

)
· 3x2 = 6x5 + 6x2

y =
√
x2 + 1

y ′ =
2x

2
√
x2 + 1

=
x√
x2 + 1

y = sin (ωt) variable, t

ẏ = ω cos (ωt)

y = e−iωt variable, t

ẏ = −iω e−iωt

y = sin2 x = (sin x)2

y ′ = 2 sin x cos x = sin (2x) (2nd step, addition theorem)

y = sin
(
x2
)

y ′ = cos
(
x2
)
· 2x = 2x cos

(
x2
)

y = eax

y ′ = a eax

y = ef(x)

y ′ = f ′(x) · ef(x)

4.5.6 Inverse Funktion

y =
√
x i. e., x = y2; x ′ = 2y

y ′ =
1

2y
=
1

2
√
x

y = arcsin x i. e., x = siny; x ′ = cosy

y ′ =
1

cosy
=

1

cos (arcsin x)
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=
1√

1− [sin (arcsin x)]2

=
1√
1− x2

y = arctan x i. e., x = tany; x ′ =
1

cos2 y

y ′ = cos2 y = [cos (arctan x)]2

=
1

1+ [tan (arctan x)]2
(addition theorem)

=
1

1+ x2

4.6 Derivatives of Higher Order

4.6.1 Basics

• If the derivative of a function y = f(x) is itself differentiable, we
can calculate also its derivative, which is the second derivative
of f(x). We can write

y ′′ = f ′′(x) = f(2)(x) =
d2

dx2
f(x)

=
d

dx

(
d

dx
f(x)

)
=
d

dx
f ′(x) (4.48)

• Derivatives of higher order are calculated in a similar way. The
general notation is

y(n) = f(n)(x) =
dn

dxn
f(x) (4.49)

• Example: nth-order derivative of the power function y = xn

y(n) =
dn

dxn
xn =

dn−1

dxn−1

(
nxn−1

)
= n

dn−1

dxn−1
xn−1

= n · (n− 1) · (n− 2) · · · 2 · 1 = n!

4.6.2 Example 1: Coefficients of a Power Series

Steady functions can often be expanded as a power series (Taylor
series) in a certain interval around the expansion point x0,

f(x0 + x) =

∞∑
n=0

anx
n (4.50)

(cf. Sections 3.5.2 through 3.5.4). The coefficients an are obtained
from the nth derivatives of the function at point x0,

an =
1

n!
f(n) (x0) (4.51)
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4.6.3 Example 2: The Derivatives of the Complex Exponential Function

• We have discussed the complex exponential function

f(t) = eiωt = cos (ωt) + i sin (ωt)

of the real variable t. Its first four derivatives read

ḟ(t) = iω eiωt = ω [− sin (ωt) + i cos (ωt)]

f̈(t) = −ω2 eiωt = ω2 [− cos (ωt) − i sin (ωt)]

f(3)(t) = −iω3 eiωt = ω3 [sin (ωt) − i cos (ωt)]

f(4)(t) = ω4 eiωt = ω4 [cos (ωt) + i sin (ωt)] = ω4 f(t)

The upper figure shows the function and its derivatives (with
increasing radius for arbitrarily chosen ω > 1) in the complex
plane for times t ⩾ 0. The time zero t = 0 is marked with a dot
in each function.

Re

Im

ω > 1

1
i

• With a minus sign in the exponent, the derivatives read (lower
figure)

g(t) = e−iωt = cos (ωt) − i sin (ωt)

ġ(t) = −iω e−iωt = ω [− sin (ωt) − i cos (ωt)]

g̈(t) = −ω2 e−iωt = ω2 [− cos (ωt) + i sin (ωt)]

g(3)(t) = iω3 e−iωt = ω3 [sin (ωt) + i cos (ωt)]

g(4)(t) = ω4 e−iωt = ω4 [cos (ωt) − i sin (ωt)]

= ω4 g(t)

Re

Im

ω > 1

1
i

4.7 Applications: Curve Sketching, Problems Involving Extremal Values

4.7.1 Extremal Values and Inflection Points of a Function

• The extremal values of a function are its local minima and max-
ima. The tangent to the function graph is horizontal at these
points. Hence, the extremal values are equal to the zeroes of
the first derivative and can be found by calculating the latter.

• For determining whether an extemal value is a local minimum
or maximum, we need the second derivative. In the vicinity
of a minimum, the slope of the tangent increases from nega-
tive over zero to positive values, i. e., the second derivative is
positive there. Similarly, the second derivative is negative at a
local maximum.

• At the inflection points (IP), the slope of the tangent to the first
derivative changes sign. Hence, the inflection points are the
zeroes of the second derivative, provided that the first deriva-
tive is non-zero there.

x

y

1 2 3

1

2

3

f(x)

IP

• If both the first and the second derivative are zero at the same
point, different cases can occur. The function can either have
an extremal point (example, y = x4 with a local minimum at
x0 = 0) or an inflection point with horizontal tangent (exam-
ple, y = x3 at x0 = 0). For discriminating between these
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cases, derivatives of higher ordermust be considered. For a de-
tailed discussion, the reader is referred to standard textbooks
of mathematics.

4.7.2 Example 1: Polynomial of Third Order

• The function plotted on the previous page is the polynomial

y =
2

3
x3 − 4x2 + 6x+

1

2

first derivative

y ′ = 2x2 − 8x+ 6

second derivative

y ′′ = 4x− 8

• Its extremal points (zeroes of the first derivative) are at

x1 = 1 and x2 = 3

with

y ′′(x1) = −4 < 0 ↪→ maximum

y ′′(x2) = +4 > 0 ↪→ minimum

• There is only one inflection point (zero of the second deriva-
tive), located at

xIP = 2

4.7.3 Example 2: A Problem From Geometry

Calculate the height of the circular cylinder with the biggest volume,
which fits into a sphere with given radius R.

h/2

h/2
R

r

• Let h be the height and r the radius of the fitted cylinder. Its
volume reads

Vcyl = r
2πh

• The fitting condition connects h and r via Pythagoras’s law(
h

2

)2
+ r2 = R2 ↪→ r2 = R2 −

h2

4

• This lets us express the cylinder volume as a function of only
one independent variable, say, h

Vcyl(h) =

(
R2 −

h2

4

)
πh = R2πh−

π

4
h3

d

dh
Vcyl(h) = R

2π−
3π

4
h2

d2

dh2
Vcyl(h) = −

3π

2
h
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• The first derivative has only one positive zero,

hmax =
2√
3
R

The second derivative of Vcyl(h) is negative for all positive h,
so hmax is a maximum indeed.

4.8 Functions of More Than One Variable: Partial Derivatives

4.8.1 Basic Ideas

• In this section we discuss functions of more than one indepen-
dent variable, such as

y = f(x,z) (4.52)

An example from physics is the pressure of an enclosed quantity
of gas, if both the volume V and the temperature T can vary;
cf. Section 3.2.1.

• We can calculate the increment of the function value corre-
sponding to the increment of one of the variables, while all
others are being kept constant. In our example y = f(x,z) this
yields

∆xy = f (x+ ∆x,z) − f (x,z) z constant (4.53)

∆zy = f (x,z+ ∆z) − f (x,z) x constant (4.54)

• Similarly as for a single variable, we divide these differences by
∆x and ∆z, respectively, and let the increments tend to zero

∂y

∂x
=
∂f(x,z)

∂x
= lim

∆x→0

∆xy

∆x
= lim

∆x→0

f(x+ ∆x,z) − f(x,z)

∆x
(4.55)

∂y

∂z
=
∂f(x,z)

∂z
= lim

∆z→0

∆zy

∆z
= lim

∆z→0

f(x,z+ ∆z) − f(x,z)

∆z
(4.56)

• The expressions ∂y/∂x and ∂y/∂z are dubbed the partial deriva-∂y

∂x
,
∂y

∂z
, etc.

tives of the function y = f(x,z). Here the symbol ∂ replaces d
for indicating infinitesimal quantities. The calculation rules for
partial derivatives are the same as for regular derivatives. All
variables except the one with respect to which we differentiate
are treated as constants.
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4.8.2 Graphical Interpretation

• A function of two variables can be graphically depicted as an ex-
panse in a 3-d coordinate system, two of its axes representing
the two variables and the third one the function value. Simi-
larly, a function of n variables forms a hypersurface in a space
of (n+ 1) dimensions. A graphical representation is no longer
possible for n > 2.

x

z

f(x,z)

x0

z0

∂f
∂x

∣∣
x0,z0

∂f
∂z

∣∣
x0,z0

• The partial derivatives ∂f/∂x|x0,z0 and ∂f/∂z|x0,z0 are the slopes
of the two lines on the function expanse at position (x0; z0),
for which either of the variables is constant (z0 and x0, respec-
tively) and which intersect in this point. Also for n variables
(n > 2), each partial derivative represents the slope of a line in
the (n+ 1)-d hyperspace.

4.8.3 Example 1: Pressure of an Enclosed Quantity of Gas

In Section 3.2.1 we had written the pressure of an enclosed quan-
tity of one mole of an ideal gas as a function of its volume V and
temperature T ,

p = p(V,T) = R
T

V

where R is the universal gas constant. Its partial derivatives read

∂p

∂T
=
R

V

∂p

∂V
= −R

T

V2

4.8.4 Example 2: Plane Waves

• Waves are vibrations propagating in space. The simplest type
are plane waves in an isotropic medium. Their wave fronts,
i. e., the locations of constant phase, are perpendicular to the
propagation direction and have infinite extension.

• A plane wave propagating in x direction can be described by the
following complex term, the physically meaningful component
being its real part (cf. Section 6.3)

A(x,t) = A0 exp [i(kx−ωt)]

The complex expression is often preferred to sine and cosine
functions, since exponentials are easy to calculate with.

• A(x,t) is the amplitude of the wave, i. e., its deviation from
zero as a function of position and time (e. g., in the case of
water waves the height of the rippled water surface and in the
case of electromagnetic waves the electrical or magnetic field
strength). A0 is the maximum amplitude, k = 2π/λ the wave
number or the absolute value of the wave vector, and ω = 2πν
the angular frequency (λ, wavelength; ν, regular frequency).
The expression kx − ωt is dubbed the phase of the wave and
ω/k is its propagation velocity.
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• In the description of wave phenomena, the partial derivatives
of the amplitude with respect to space and time are important

∂A(x,t)

∂x
= ikA0 exp [i(kx−ωt)] = ikA(x,t)

∂A(x,t)

∂t
= −iωA0 exp [i(kx−ωt)] = −iωA(x,t)

∂2A(x,t)

∂x2
= −k2A0 exp [i(kx−ωt)] = −k2A(x,t)

∂2A(x,t)

∂t2
= −ω2A0 exp [i(kx−ωt)] = −ω2A(x,t)

• The prefactor i or −i in the first derivatives indicates that they
are phase-shifted with respect to A(x,t) by the angles ±π/2.
This is because ±i = exp(±iπ/2). Similarly, the minus sign
in the second derivatives indicates the phase shift π (cf. Sec-
tion 4.6.3).

4.8.5 Example 3: The Gradient

• Let us consider a space-dependent function f(⃗r) = f(x,y,z).
The gradient of f is defined as the vector which has the par-
tial derivatives of the function with respect to the three spatial
coordinates as components.2 It points in the direction of the
strongest variation of f. We write

grad f = ∇⃗f =


∂f
∂x
∂f
∂y
∂f
∂z

 =


∂
∂x
∂
∂y
∂
∂z

 f (4.57)

The symbol ∇⃗ is called nabla operator; it denotes the vector

grad f = ∇⃗f

with the partial spatial derivatives of the following function as
components (here f).

• Special case: Functions with spherical symmetry. The calcula-
tion of the gradient is particularly simple, when the function
does not depend on all three spatial coordinates explicitely but
only on the distance r from the coordinate origin, i. e., f = f(r).
Then we have

∂f

∂x
=
df

dr

∂r

∂x
with r =

√
x2 + y2 + z2 (4.58)

∂f

∂x
=
df

dr
· 2x
2r

=
x

r
· df
dr

(4.59)

In the same way

∂f

∂y
=
y

r
· df
dr

(4.60)

∂f

∂z
=
z

r
· df
dr

(4.61)

2 Sometimes also the derivative of a function with respect to a single coordinate or
even with respect to time is called its spatial or temporal gradient, respectively.
This is mathematically not fully correct.
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This yields

grad f =
df

dr
·


x
r
y
r
z
r

 =
df

dr
· r⃗
r
=
df

dr
· êr (4.62)

In this case the gradient vector is parallel to the correspondinggrad f =
df

dr
· êr

position vector everywhere, i. e., it points radially away from
for spherical symmetry the origin or toward the origin, depending on the sign of df/dr.

• Example: The electric field strength is the negative gradient of
the electric potential,

E⃗(⃗r) = −∇⃗ϕ(⃗r)

The potential around a point charge Q is centrosymmetric with
magnitude

ϕ(⃗r) = ϕ(r) =
1

4πϵ0

Q

r

The value of the corresponding field strength reads

E(r) = −
dϕ

dr
=
1

4πϵ0

Q

r2

(cf. Section 4.1.5). Eq. (4.62) indicates that the vector E⃗(⃗r)
points toward the charge or away from it everywhere.

• One can calculate the gradient in spherical coordinates (or any
other coordinate system) as well. Its components are the par-
tial derivatives with respect to r, θ, and ϕ. We will not discuss
this here.

4.9 The Differential

• Consider a function y = f(x) of the independent variable x. At
the beginning of this chapter we had discussed finite increments
∆x = x2 − x1 and ∆y = y2 − y1 of the variable and the function,
respectively. Their quotient ∆y/∆x describes the average slope
of the function graph in the interval (x1; x2). In the limit ∆x→ 0
it approaches the differential quotient or derivative

y ′(x) =
dy

dx
(4.63)

i. e., the slope of the graph at point x. For ∆x → 0 we have
x1 = x2 = x.

• It is often interesting to know, how the function value varies at
a point x, when the variable is altered only by an infinitesimal
amount dx. Such an infinitesimal variation is dubbed the dif-
ferential of x. Since y ′(x) is the slope of the function at point
x, its differential reads

dy = y ′(x)dx (4.64)

Hence, Eq. (4.63) can be formally multiplied by dx.

dy = y ′(x)dx



54 4 Differential Calculus

• For a function which depends on more than one independent
variable we can generalize Eq. (4.64) using the partial deriva-
tives. For instance, the differential of y = y(x,z) can be written
as

dy =
∂y

∂x
dx+

∂y

∂z
dz (4.65)

It is called the complete differential of the function y(x,z).

dy =
∂y

∂x
dx+

∂y

∂z
dz etc.



5 Integral Calculus

The basic problem of integral calculus is the calculation of an area
between the x axis and a function graph, i. e., with one curvilinear
border in general. We approximate the area by a large number of
narrow rectangles, the area of which is easy to calculate. Letting the
number of the rectangles tend to infinity and their width to zero then
yields the wanted area as the limiting value. Hence, we calculate
with infinitesimal quantities, i. e., differentials also in this case.

5.1 Introduction: The Definite Integral

• Let us assume, we have a curve which is the graph of a function
f(x). Our task is to calculate the area between the curve and
the x axis in a given interval [a;b].

• The area can be approximated by dividing the interval into
n rectangular stripes with widths ∆x1,∆x2, . . . ,∆xk, . . . ,∆xn,
each centered around a point xk. The corresponding function
values are f(xk), so the area of the rectangular stripes reads
∆Fk = f(xk)∆xk.

x

y y = f(x)

a b

A

• The sum area of all the stripes yields an approximation An for
the exact area A. The approximation becomes better with in-
creasing number n of the stripes (and decreasing width ∆xk).

x

y y = f(x)

a b

∆Fk

xk

f(xk)

∆xk

• Finally, in the limit n→ ∞, An approaches the exact area,

A = lim
n→∞An = lim

n→∞
n∑

k=1

∆Fk = lim
n→∞

n∑
k=1

f(xk)∆xk (5.1)

The limit is dubbed the definite integral of the function f(x)
between the borders a and b and is written in the form

A = lim
n→∞

n∑
k=1

f(xk)∆xk =

b∫
a

f(x)dx (5.2)

a and b are the lower and the upper integration limit, respec-
tively.x

y y = f(x)

a b

An

• From Eqs. (5.1) and (5.2) it follows that

A =

b∫
a

dF(x) =

b∫
a

f(x)dx (5.3)

so we have for the differentials

dF(x) = f(x)dx or f(x) =
dF(x)

dx
(5.4)

[cf. Eqs. (4.63), (4.64)].
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• The calculation of the unknown area A leads to the problem of
finding a new function F(x) for a given function f(x), so f(x) is
the derivative of F(x). Hence, differentiation and integration
are inverse mathematical operations.

• We will see later in Section 5.6, how the area A is obtained
using the function F(x). Prior to that we want to find rules for
calculating F(x).

5.2 Indefinite Integral, Primitive, Antiderivative

• Our goal consists in finding a function F(x) which, upon differ-
entiation, yields the integrand function f(x),

F ′(x) = f(x) (5.5)

• F(x) is dubbed indefinite integral, primitive, or antiderivative of
f(x).

• From differential calculus we know that two functions, which
differ only by an additive constant, have identical derivatives.
Consequently, a constant number can always be added to an
antiderivative. We write∫

f(x)dx = F(x) + C (5.6)

The constant C is dubbed integration constant and can be freelyIntegration constant C
chosen. The function f(x) is the integrand. Antiderivatives are
indicated by omitting the integration limits at the integral sign.

• To an elementary function f(x), the antiderivative can often be
obtained by “guessing” as we know the differentiation rules.
This is legitimate, if we cross-check the result by calculating
the derivative. Examples

f(x) = x ↪→
∫
xdx =

x2

2
+ C

↪→ d

dx

(
x2

2
+ C

)
= x

f(x) = cos x ↪→
∫
cos xdx = sin x+ C

↪→ d

dx
(sin x+ C) = cos x

f(x) = ex ↪→
∫
ex dx = ex + C

↪→ d

dx
(ex + C) = ex
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5.3 Integrals of Elementary Functions

5.3.1 Small Look-Up Table

f(x) = a = const.

∫
adx = ax+ C (5.7)

f(x) = xn
∫
xn dx =

1

n+ 1
xn+1 + C

n ̸= −1 (5.8)

f(x) =
1

x

∫
1

x
dx = ln |x|+ C

x ̸= 0 (5.9)

f(x) = sin x

∫
sin xdx = − cos x+ C (5.10)

f(x) = cos x

∫
cos xdx = sin x+ C (5.11)

f(x) =
1

cos2 x

∫
1

cos2 x
dx = tan x+ C (5.12)

f(x) =
1

sin2 x

∫
1

sin2 x
dx = − cot x+ C (5.13)

f(x) = ex
∫
ex dx = ex + C (5.14)

f(x) = ax
∫
ax dx =

1

lna
ax + C (5.15)

f(x) =
1√
1− x2

∫
1√
1− x2

dx = arcsin x+ C (5.16)

f(x) =
1

1+ x2

∫
1

1+ x2
dx = arctan x+ C (5.17)

5.3.2 Examples

∫ √
xdx =

∫
x1/2 dx =

1

1+ 1
2

x1+1/2 + C =
2

3

√
x3 + C

∫
1√
x
dx =

∫
x−1/2 dx =

1

1− 1
2

x1−1/2 + C = 2
√
x+ C

∫
x5/3 dx =

1

1+ 5
3

x1+5/3 + C =
3

8

3
√
x8 + C

5.4 Rules for Composite Functions

5.4.1 Sum Rule ∫
[f(x) + g(x)]dx =

∫
f(x)dx+

∫
g(x)dx (5.18)

As proof differentiate both sides.
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5.4.2 Constant Pre-Factor

∫
a · f(x)dx = a ·

∫
f(x)dx (5.19)

As proof differentiate both sides.

5.4.3 Integration by Parts

There is no general rule for calculating the integral of products of
two or more functions. If, however, the integrand can be written as
the product of one function with the derivative of another, we have

∫
f(x) · g ′(x)dx = f(x) · g(x) −

∫
f ′(x) · g(x)dx (5.20)

If we are lucky, the integral on the right-hand side is easier to per-
form than the original one. The integration by parts follows from
the product rule for derivatives,

d

dx
[f(x) · g(x)] = f ′(x) · g(x) + f(x) · g ′(x) ↪→∫

d

dx
[f(x) · g(x)]dx︸ ︷︷ ︸
f(x) · g(x)

=

∫
f ′(x) · g(x)dx+

∫
f(x) · g ′(x)dx

5.4.4 Integration by Substitution

Assume, an integral has the form∫
f [g(x)] · g ′(x)dx

In this case we can define a substitution variable u = g(x) with the
differential du = g ′(x)dx and obtain

∫
f [g(x)] · g ′(x)dx =

∫
f(u)du (5.21)

This equation follows from the chain rule of differentiation: Let F(u)
be a primitive of f(u), i. e., dF/du = f(u). Its derivative with respect
to x reads

dF

dx
=
dF

du

du

dx
=
dF

du

dg

dx
= f(u)g ′(x) = f [g(x)] · g ′(x)

Integrating the first and the last expression with respect to x yields
the substitution rule [Gl. (5.21)],

∫
dF

dx
dx = F(u) + C =

∫
f(u)du =

∫
f [g(x)] · g ′(x)dx
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5.5 Examples

5.5.1 Sum Rule and Constant Pre-Factor

∫
3 cos xdx = 3 sin x+ C

∫
π ex dx = π ex + C

∫ (
x27 + sin x

)
dx =

1

28
x28 − cos x+ C

∫ [
A
(
3x2 + B

)2
+ cos x

]
dx =

9

5
Ax5 + 2ABx3 +AB2x+ sin x+ C

5.5.2 Integration by Parts

∫
ln xdx =

∫
1︸︷︷︸

g′(x)

· ln x︸︷︷︸
f(x)

dx =?

g(x) = x; f ′(x) =
1

x
↪→∫

ln xdx = x ln x−

∫
x

x
dx = x (ln x− 1) + C

∫
x︸︷︷︸

f(x)

sin x︸︷︷︸
g′(x)

dx =?

g(x) = − cos x; f ′(x) = 1 ↪→∫
x sin xdx = −x cos x+

∫
cos xdx = −x cos x+ sin x+ C

∫
x2︸︷︷︸
f(x)

ex︸︷︷︸
g′(x)

dx =?

g(x) = ex; f ′(x) = 2 x ↪→∫
x2 ex dx = x2 ex − 2

∫
x︸︷︷︸

f(x)

ex︸︷︷︸
g′(x)

dx

g(x) = ex; f ′(x) = 1 ↪→∫
x2 ex dx = x2 ex − 2

(
x ex −

∫
ex dx

)
= ex

(
x2 − 2x+ 2

)
+ C

The integration by parts has been applied twice here.
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cos2 xdx =

∫
cos x︸ ︷︷ ︸
f(x)

cos x︸ ︷︷ ︸
g′(x)

dx =?

g(x) = sin x; f ′(x) = − sin x ↪→∫
cos2 xdx = sin x cos x−

∫
(− sin x) sin xdx =

sin x cos x+

∫ (
1− cos2 x

)
dx

The two integrals of the function cos2 x on the left- and the right-
hand side of the equation can be combined,

2

∫
cos2 xdx = sin x cos x+ x+ C∗ ↪→

∫
cos2 xdx =

1

2
(sin x cos x+ x+ C∗) =

1

4
sin (2x) +

1

2
x+ C

In the last step, one of the addition theorems has been used again
(C∗ = 2C).

5.5.3 Integration by Substitution ∫
3 e3x dx =?

subst.: 3x = u; 3dx = du ↪→∫
3 e3x dx =

∫
eu du = eu + C = e3x + C

∫
e−iωt dt =?

subst.: − iωt = u; −iωdt = du ↪→∫
e−iωt dt =

i

ω

∫
eu du =

i

ω
eu + C =

i

ω
e−iωt + C

∫
x2 cos

(
x3
)
dx =?

subst.: x3 = u; 3x2 dx = du ↪→∫
x2 cos

(
x3
)
dx =

1

3

∫
cosudu =

1

3
sinu+ C =

1

3
sin
(
x3
)
+ C

∫
(3x+ 7)27 dx =?

subst.: 3x+ 7 = u; 3dx = du ↪→
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∫
(3x+ 7)27 dx =

1

3

∫
u27du =

1

84
u28 + C =

1

84
(3x+ 7)28 + C

∫ (
x3 + 2

)2 · 3x2 dx =?
subst.: x3 + 2 = u; 3x2 dx = du ↪→∫ (

x3 + 2
)2 · 3x2 dx = ∫

u2du =
1

3
u3 + C =

1

3

(
x3 + 2

)3
+ C

The integral can also be performed by expanding the brackets or us-
ing integration by parts. Substitution is the fastest way.

∫
dx

x ln x
=?

subst.: ln x = u;
1

x
dx = du ↪→∫

dx

x ln x
=

∫
du

u
= ln |u|+ C = ln |ln x|+ C

∫
cot xdx =

∫
cos x

sin x
dx =?

subst.: sin x = u; cos xdx = du ↪→∫
cot xdx =

∫
du

u
= ln |u|+ C = ln |sin x|+ C

∫
sin3 xdx =?

To get the differential right, we must substitute cos x rather than
sin x in this case,

subst.: cos x = u; − sin xdx = du ↪→∫
sin3 xdx =

∫ (
1− cos2 x

)
sin xdx = −

∫ (
1− u2

)
du =

∫ (
u2 − 1

)
du =

1

3
u3 − u+ C =

1

3
cos3 x− cos x+ C

5.5.4 Concluding Remarks

• The above examples—in particular the last one—have shown
that the best way for calculating indefinite integrals is not al-
ways visible at first glance. Finding the fastest way is a matter
of practice. There is no general recipe.
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• Moreover, not every integral can be calculated in closed form.Not every integral is
Counterexampledoable!

F(x) =

∫
e−x

x
dx

All we can do is expand the integrand into its power series and
integrate it term by term.

• Many integrals can be found inmathematical formularies, e. g.,
Bronstein, Semendjajew, Taschenbuch der Mathematik, pub-
lisher Harri Deutsch.

5.6 Definite and Indefinite Integral

5.6.1 Area Calculation with the Antiderivative

• We had introduced the definite integral for the purpose of cal-
culating the area underneath a function graph [y = f(x)] be-
tween the bounds a and b (cf. Section 5.1).

• Let us start by considering only a part Ax of this area, between
a and a value x (with a < x < b),

Ax =

x∫
a

f(ξ)dξ =

x∫
a

dF(ξ) = F(x) + C (5.22)

Since x is one of the integration bounds, the variable has been
changed to ξ.

ξ

y
y = f(ξ)

a bx

Ax

• The area changes upon shifting x; hence the antiderivative F on
the right-hand side must have x as its variable.

• When we shift x to the lower integration limit a, the area be-
comes zero,

lim
x→a

Ax = lim
x→a

x∫
a

f(ξ)dξ = F(a) + C = 0 (5.23)

Hence, the integration constant is related to the value of the
antiderivative at position a,

C = −F(a) (5.24)

• The area between the limits a and x then reads [see Eqs. (5.22)
and (5.24)]

x∫
a

f(ξ)dξ = F(x) − F(a) (5.25)

and, accordingly, the whole area between a und b

b∫
a

f(x)dx = F(b) − F(a) (5.26)
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• Consequence: If we know any antiderivative F(x) of f(x) with
arbitrary integration constant C, the definite integral is ob-
tained as

b∫
a

f(x)dx = F(x)
∣∣∣b
a
=
[
F(x)

]b
a
= F(b) − F(a) (5.27)

• Example

b∫
a

x2 dx =

[
x3

3
+ C

]b
a

=
b3

3
−
a3

3
=
1

3

(
b3 − a3

)

• Note:

– Areas below the x axis have a negative sign.

– The sign of an area changes when the upper integration
bound is located left of the lower one.

5.6.2 Example: Sine Function

π∫
0

sin xdx = −cos x
∣∣∣π
0
= − cosπ− (− cos 0) = 1+ 1 = 2

The area underneath a sine arc has the integer value of 2 area units.
Analogously

2π∫
π

sin xdx = −cos x
∣∣∣2π
π

= − cos (2π) + cosπ = −1− 1 = −2

2π∫
0

sin xdx = −cos x
∣∣∣2π
0

= − cos (2π) + cos 0 = −1+ 1 = 0

3π/2∫
π/2

sin xdx = −cos x
∣∣∣3π/2
π/2

= − cos
3π

2
+ cos

π

2
= 0+ 0 = 0

In the calculation of definite integrals, the integration constant can

x

y

−1

1

π

2π

3π

y = sinx

be omitted (or set equal to zero), since it cancels out upon inserting
the bounds anyway.

5.7 Rules for Definite Integrals

Most of these rules are immediately clear or follow easily from those
for indefinite integrals. The only exception is the substitution rule,
since substitution of the variable affects the integration bounds.
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5.7.1 Adding Areas

b∫
a

f(x)dx+

c∫
b

f(x)dx =

c∫
a

f(x)dx (5.28)

and, conversely,

c∫
a

f(x)dx−

c∫
b

f(x)dx =

b∫
a

f(x)dx (5.29)

a∫
a

f(x)dx = 0 (5.30)

(immediately clear).

x

y y = f(x)

a b c

5.7.2 Swapping the Integration Bounds

b∫
a

f(x)dx = −

a∫
b

f(x)dx (5.31)

5.7.3 Differentiating with Respect to One of the Bounds

d

dx

x∫
a

f(ξ)dξ =
d

dx
[F(x) − F(a)] = f(x) (5.32)

5.7.4 Integration by Parts

b∫
a

f(x) · g ′(x)dx = f(x) · g(x)
∣∣∣b
a
−

b∫
a

f ′(x) · g(x)dx (5.33)

with

f(x) · g(x)
∣∣∣b
a
= f(b) · g(b) − f(a) · g(a)

5.7.5 Integration by Substitution

b∫
a

f [g(x)] · g ′(x)dx =

g(b)∫
g(a)

f(u)du (5.34)

example

2∫
1

exp (3x) dx =
1

3

6∫
3

exp (u) du =
1

3
exp (u)

∣∣∣6
3
=
1

3

(
e6 − e3

)
or

2∫
1

exp (3x) dx =
1

3
exp (3x)

∣∣∣2
1
=
1

3

(
e6 − e3

)
Attention: If we keep the substituted variable after calculating the
antiderivative, the integration bounds must be adapted. If we re-
substitute the original variable, the original bounds are correct.
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5.7.6 Example: Area of a Circle

• We place the coordinate origin at circle center. It suffices to
calculate the area of the first quadrant and multiply the result
by four.

• The equation for the circle line reads

x2 + y2 = R2 ↪→ y =
√
R2 − x2

for 0 ⩽ x ⩽ R.x

y

R

A

• Hence, the circle area is calculated as

Acircle = 4

R∫
0

√
R2 − x2 dx = 4R

R∫
0

√
1−

( x
R

)2
dx

subst.:
x

R
= sinu; dx = R cosudu ↪→

Acircle = 4R
2

π/2∫
0

√
1− sin2 u cosudu = 4R2

π/2∫
0

cos2 udu

= 4R2
[
1

2
u+
1

4
sin (2u)

]π/2
0

(cf. the last example in Section 5.5.2)

Acircle = 4R
2 · π
4
= R2π

• Calculating the circle area in this way is tedious. In particular,
the required substitution is not obvious. The calculation be-
comes much easier and shorter, if we perform it—correspond-
ing to the geometry of the problem—in polar rather than Carte-
sian coordinates. This will be demonstrated in Section 5.9.2.

5.8 Infinite Integration Limits

• We want to calculate an integral with infinite upper integration
limit,

∞∫
a

f(x)dx =?

• Solution: Calculate the integral with a finite upper bound b
and, subsequently, determine the limit for b→ ∞,

∞∫
a

f(x)dx = lim
b→∞

b∫
a

f(x)dx (5.35)
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• Example: Exponential function
∞∫
0

e−x dx = lim
b→∞

b∫
0

e−x dx = lim
b→∞

[
−e−x

]b
0

= 1− lim
b→∞ e−b = 1

The infinitely long, ever narrowing, area between the coordi-
nate axes and the graph of the exponential has the smooth
value of 1 unit area.

x

y

0,5

1

0,5 1 1,5 2

f(x) = exp (−x)

• If the lower integration limit is at minus infinity, we proceed
in a similar way,

b∫
−∞

f(x)dx = lim
a→−∞

b∫
a

f(x)dx (5.36)

• Simple example with two infinite bounds
+∞∫
−∞

1

1+ x2
dx = arctan x

∣∣∣+∞
−∞ =

π

2
−
(
−
π

2

)
= π

The bell-shaped curve representing the integrand is dubbed
“Lorentzian (curve)”. It plays an important role in the emis-
sion and absorption of electromagnetic waves, e. g., light. The
area underneath it has the size π unit area.

x

y

1

−1,5 −0,75 0,75 1,5

f(x) =
1

1+ x2

5.9 Surface Integrals in Polar Coordinates

5.9.1 Motivation: The Surface Differential in Cartesian Coordinates

• The goal of integral calculus is the calculation of the area under-
neath a function graph f(x). So far, we had divided it into nar-
row rectangles of width ∆xk and height f(xk). The area beneath
the curve is the sum of all the rectangular areas ∆Fk = f(xk)∆xk
for ∆xk → 0.

• The sought-after area can be subdivided further by assembling
each narrow element of short, vertically stacked, rectangles of
height ∆yl (and width ∆xk). If we let ∆xk and ∆yl tend to zero,
we obtain two integrations,

A =

b∫
a

dx

f(x)∫
0

dy =

b∫
a

dx y
∣∣∣f(x)
0

=

b∫
a

f(x)dx (5.37)

The (trivial) y integral must be performed first, since its result
yields the integrand of the x integration.

x

y
y = f(x)

a b

∆Fkl

xk

f(xk)

∆xk

∆yl

• A small (but not infinitesimal) rectangular surface element in
Cartesian coordinates has the area

∆Fkl = ∆xk ∆yl (5.38)

so the surface differential reads

dF = dxdy (5.39)dF = dxdy
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• This procedure allows us to calculate areas of arbitrary shape
in plane Cartesian coordinates as a double integral along the
coordinate axes,

A =
x

(A)

dxdy (5.40)

The integration bounds must be chosen such that the area A is
covered [indicated by (A) below the integral sign].

• Simple example: The area of a rectangle of widthW in x direc-
tion and length L in y direction is

Arectangle =

W∫
0

dx

L∫
0

dy = x
∣∣∣W
0
y
∣∣∣L
0
= WL

5.9.2 Changing to Polar Coordinates

• It is always possible to compose an arbitrary area of small
rectangular-shaped elements. This works in a polar coordinate
system as well. Let us consider a position r⃗ = (r;ϕ).

• A small increment in radial direction is simply ∆r. In tangential
direction, on the other hand, a length element is given by the
correponding angular increment ∆ϕ and the distance from the
origin and reads r∆ϕ.O

ϕ

r ∆r

r∆ϕ

∆ϕ

• This yields the surface differential in polar coordinates as

dF = r dr dϕ (5.41)

The slight curvature of the segment r dϕ becomes unimportant

dF = r dr dϕ

when we go over to infinitesimal quantities. An arbitrary area
is then calculated as

A =
x

(A)

r dr dϕ (5.42)

• Example: The area of a circle with radius R is calculated very
simply in polar coordinates,

Acircle =

R∫
0

r dr

2π∫
0

dϕ =
1

2
R2 · 2π = R2π

Again, it is important to choose the integral limits so as to cover
the required area.

5.9.3 Application: The Area Beneath a Gaussian

• The Gaussian normal distribution plays an important role for
describing the statistical fluctuations of data, e. g., results of
a measurement, around their average. In its simplest form it
reads

f(x) = exp
(
−x2

)
(5.43)
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• Its graph is a bell-shaped curve, similar to a Lorentzian, but
decaying much faster in its wings (cf. p. 66). Its primitive, the
error function, cannot be written down in closed form, only
as a power series. Nevertheless, it is possible to analytically
calculate the definite integral from −∞ to +∞. To this end we
write the integral twice, choosing x and y as variable:

x

y

1

−1,5 −0,75 0,75 1,5

f(x) = exp
(
−x2

)

AGauss =

+∞∫
−∞
exp

(
−x2

)
dx =

+∞∫
−∞
exp

(
−y2

)
dy (5.44)

• Multiplying both expressions yields

A2Gauss =

+∞∫
−∞

dx

+∞∫
−∞

dy exp−
[(
x2 + y2

)]
(5.45)

• The variables x and y can be viewed as Cartesian coordinates
in a plane, where the integration is to be performed over the
whole plane. Changing to polar coordinates leads to

A2Gauss =

2π∫
0

dϕ

∞∫
0

dr r exp
(
−r2

)
(5.46)

• With the substitution r2 = u, the r integral can be easily per-
formed (cf. p. 66) yielding

A2Gauss = 2π
1

2
; hence AGauss =

√
π

Due to the faster decay, the area is smaller than the area un-
derneath a Lorentzian of the same height.

5.10 Volume Integrals

In a similar way as areas, also volumes of given bodies can be calcu-
lated by integration, if we compose them of small cuboid elements.
Since we are now dealing with three-dimensional space, three inte-
grations along the coordinates of space are required.

5.10.1 Cartesian Coordinates

• A two-dimensional Cartesian coordinate system is extended to
three dimensions by adding the z axis in the direction perpen-
dicular to the xy plane.

• Hence, in Cartesian coordinates the volume differential simply
reads

dV = dxdydz (5.47)

and a volume is calculated as

dV = dxdydz

V =
y

(V)

dxdydz (5.48)



5.10 Volume Integrals 69

• Example: A cuboid of widthW (along the x axis), length L (along
the y axis), and height H (along the z axis) has the volume

Vcuboid =

B∫
0

dx

L∫
0

dy

H∫
0

dz = x
∣∣∣B
0
y
∣∣∣L
0
z
∣∣∣H
0
= BLH

5.10.2 Cylindrical Coordinates

• Cylindrical coordinates are obtained by adding the z axis per-
pendicularly to the ρϕ plane of a 2-d polar coordinate system
(cf. Section 1.3.2).

• Hence, the volume differential is again obtained very easily
from the surface differential in polar coordinates as

dV = ρdρdϕdz (5.49)

and the expression for a volume reads

dV = ρdρdϕdz

V =
y

(V)

ρdρdϕdz (5.50)

• Example: Volume of an upright circular cylinder with radius R
and height H

Vcylinder =

R∫
0

ρdρ

2π∫
0

dϕ

H∫
0

dz =
1

2
R2 · 2π ·H = R2πH

5.10.3 Spherical Coordinates

• Let us consider a small, but finite, cuboid volume element ∆V
in spherical coordinates at position r⃗ = (r; θ; ϕ). It is spanned
by the following three increments.

• The increment in radial direction is ∆r.

• The increment in tangential direction given by an angular in-
crement ∆θ and constant ϕ is r∆θ.

• The increment in the other tangential direction given by an an-
gular increment ∆ϕ and constant θ is r sin θ∆ϕ. It corresponds
to the increment ρ∆ϕ in cylindrical coordinates.

x

y

z

O

θ

ϕ

r

r sin θ

r⃗

r cos θ

∆r

r∆θ

r sinθ∆ϕ

∆θ

∆ϕ

• Multiplication of these three increment lengths and moving to
infinitesimal quantities yields the volume differential

dV = r2 sin θdrdθdϕ (5.51)

and the expression for a volume

dV = r2 sin θdrdθdϕ

V =
y

(V)

r2 sin θdrdθdϕ (5.52)

• Example: A sphere with radius R has the volume

Vsphere =

R∫
0

r2dr

π∫
0

sin θdθ

2π∫
0

dϕ =
1

3
R3 · 2 · 2π =

4π

3
R3
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Please note: In order to cover the complete volume of the
sphere, the polar angle θ must vary from 0 to π (i. e., from the
north pole via the equator to the south pole) and the azimuth
angle ϕ over the full longitude range from 0 to 2π.

5.10.4 Integrals over the Surface of a Sphere, Solid Angle

• The surface of a sphere can be calculated by setting r = R =
const. and performing only the integrals over the angle coordi-
nates. To this end we must first define the surface element in
spherical coordinates,

dA = R2 sin θdθdϕ (5.53)

The length differential dr in radial direction is not present,

dA = R2 sin θdθdϕ

since r = const. Hence, the surface of a sphere is calculated
as

Asph−sf = R
2
x

(A)

sin θdθdϕ (5.54)

and has the value

Asph−sf = R
2

π∫
0

sin θdθ

2π∫
0

dϕ = R2 · 2 · 2π = 4πR2

• The surface element of the unit sphere (i. e., a sphere with
radius R = 1) is also called solid-angle elelement dΩ; it readssolid-angle element dΩ

dΩ = sin θdθdϕ (5.55)

and the integration over a solid angle Ω is

dΩ = sin θdθdϕ

Ω =
x

(Ω)

sin θdθdϕ (5.56)

For the full solid angle (i. e., the total surface of the unit sphere)
we obtain the result 4π.

• Example: The electric flux of a point charge through a spherical
surface. We place an electrical point charge Q at the center of
a sphere with radius R and calculate the electric flux Φel. of its
field through the surface of the sphere. The flux is defined as

Φel =
x

(A)

E⃗ · dA⃗

To any surface element ∆A (or dA), one can ascribe a vector ∆A⃗
(or dA⃗). Its absolute value is equal to the size of the surface
element and its direction is perpendicular to it. Hence, the
vectors of all the surface elements of a sphere point radially
outward—as does the field-strength vector. The scalar product
is then equal to the product of the absolute values,

·

∆A

∆A⃗
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Φel =
x

(A)

E · dA = R2
π∫
0

sin θdθ

2π∫
0

dϕ
Q

4πϵ0 R2

=
Q

4πϵ0

π∫
0

sin θdθ

2π∫
0

dϕ =
Q

ϵ0

The electric flux is always Q/ϵ0, independent of the size of the
sphere.

5.10.5 Example: Moments of Inertia

The last example has already demonstrated that two- and three-
dimensional integrals cannot only be used for calculating surfaces
and volumes, but that other quantities requiring integrations over
surfaces or volumes are accessible as well. Here we consider the
moments of inertia of a solid cylinder and a solid sphere for rotation
about the respective symmetry axis.

• The moment of inertia Θ plays a similar role for the rotation of
a body as its mass does for translational motion. In contrast to
the mass, the moment of inertia depends on the shape of the
body, the distribution of its masses, and even on the choice of
the rotation axis. It is defined as

Θ =
y

(M)

(r∗)2 dm (5.57)

where r∗ is the perpendicular distance of mass element dm from
the rotation axis. The integral is to be performed over the com-
plete massM of the body.

• In a homogeneous body, the mass element is the product of the
mass density η and the respective volume element dV, so dm =
ηdV. Hence, the mass integral reduces to a volume integral,

Θ = η
y

(V)

(r∗)2 dV (5.58)

• Solid cylinder with radius R, height H, and mass M: We use
cylindrical coordinates with the cylinder axis, which is also the
rotation axis, coinciding with the z axis of the coordinate sys-
tem. Then the distance r∗ is equal to the coordinate ρ for all
volume elements, and the moment of inertia is

Θcylinder = η

R∫
0

ρ3 dρ

2π∫
0

dϕ

H∫
0

dz = η · 1
4
R4 · 2π ·H

=
1

2
R2 · ηR2 πH

With the cylinder massM = ηV = ηR2 πH we can write

H

R

r∗

∆V

Θcylinder =
1

2
MR2

For comparison: A thin-walled hollow cylinder, in which all
the mass elements are located at the same distance R from the
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rotation axis, has twice this moment of inertia, viz. Θh−cyl =
MR2.

• Solid sphere with radius R and massM: Here we use spherical
coordinates with the origin at the center of the sphere. The
rotation axis is the z axis again. The perpendicular distance
from it is r∗ = r sin θ, so

Θsphere = η

R∫
0

r4 dr

π∫
0

sin3 θdθ

2π∫
0

dϕ

= η · 1
5
R5 ·

[
1

3
cos3 θ− cos θ

]π
0

· 2π

The antiderivative of f(x) = sin3 x has been calculated in Sec-

R

r

r∗

∆Vθ

tion 5.5.3. Inserting the limits 0 and π finally yields

Θsphere = η ·
1

5
R5 · 4
3
· 2π =

2

5
R2 · η 4π

3
R3

or, with the mass of the sphereM = η (4π/3)R3,

Θsphere =
2

5
MR2

For a thin-walled hollow sphere we obtainΘh−sph = (2/3)MR2.
The verification is left to the reader as a problem.



6 Simple Examples of Ordinary Differential Equations

6.1 Growth of a Population

We assume that some population (e. g., a culture of bacteria) com-
prises N(t) individuals at time t. We wish to figure out, how this
number changes as a function of time.

6.1.1 Setting up the Differential Equation

• How a population evolves exactly, depends on numerous fac-
tors such as temperature, food supply, the presence of preda-
tors, etc. We assume in the following that the temperature is
kept constant, there is no shortage of food, and predators are
absent. Thus, external parameters shall not affect the popula-
tion.

• Under these conditions, the assumption is reasonable that the
growth of the population depends solely on the number of in-
dividuals which already exist and the (constant) reproduction
rate. We can write the increment ∆N within a time interval ∆t
as

∆N ∝ N(t) · ∆t (6.1)

• To replace the proportionality with an equation, we introduce a
proportionality constant, the growth constant k, and we changegrowth constant k
to infinitesimal quantities (differentials) dN and dt,

dN = k ·N(t) · dt (6.2)

Formal division by dt yields

dN

dt
= kN(t) (6.3)

• Equation (6.3) relates a—still unknown—function N(t) with its
derivative. Such an equation is dubbed differential equation.

• Here we have the most elementary form, a homogeneous, ordi-
nary, linear differential equation of 1. order. These terms have
the following meaning. Homogeneous, all terms of the equa-
tion containN(t) or its derivative; ordinary, the unknown func-
tion depends only on one variable; linear, N(t) and its deriva-
tive enter in the equation only linearly; 1. order, the highest
derivative present is the first.

• Our task is to find the solutionN(t) to the differential equation,
i. e., a function which, when inserted, fulfills the equation.
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6.1.2 Solution of the Differential Equation

• For solving a differential equation it is important to know the
initial or boundary conditions. In our case, it is the number ofinitial conditions
individuals at time zero. We dub it N0,

N(0) = N0 (6.4)

• The solution of an ordinary differential equation of 1. order is
easily obtained with the method of separation of the variables.
To this end we move all factors of the dependent variable N toseparation of the variables
one side of the equation and the independent variable t to the
other,

dN

N
= kdt (6.5)

• Now we can integrate both sides, from time zero to a later time
t. We have to make sure that the values ofN and t are correctly
assigned to each other: At time zero, the number of individuals
is N0 according to the initial condition, at the later time t it is
N(t),

N(t)∫
N0

dN∗

N∗ = k

t∫
0

dt∗ (6.6)

The integration variables have been renamed N∗ and t∗, re-
spectively, to use different symbols for variables and integra-
tion bounds.

• Performing the integrals yields

lnN(t) − lnN0 = k t (6.7)

ln
N(t)

N0
= k t (6.8)

• Forming the antilogarithm of both sides yields the final result

N(t) = N0 e
kt (6.9)

t

N(t)

N0
N(t) = N0 e

kt

• The population grows without limit according to an exponential
function. In the real world, the increase will eventually level
off at some time, e. g., when the population runs out of food or
when the living conditions become unfavorable for some other
reason. In this case, additional terms must be added to the
differential equation [Eq. (6.3)], so its solution changes.

6.2 Radioactive Decay

• The number of atomic nuclei of a radioactive substance de-
creases with time due to the disintegrations. Let us assume
that N0 nuclei are present at time t = 0. We wish to calculate
their number N(t) at some later time t.
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• Also in this case it is reasonable to assume that the number of
disintegrations within a given time interval is the higher, the
more nuclei are still present,

∆N ∝ −N(t) · ∆t (6.10)

or, using differentials and a proportionality constant,

dN = −λ ·N(t) · dt (6.11)

• The minus sign corresponds to the fact that ∆N or dN are neg-
ative due to the decay. The proportionality constant λ is then
positive. It is dubbed the decay constant of the substance.

decay constant λ

• The solution N(t) can again be obtained via separation of the
variables. It reads

N(t) = N0 e
−λt (6.12)

• The calculation and the result are very similar to the case of
the population growth discussed above. The only difference is
the negative sign in the exponent.

• The decay constant is related to the half-life T1/2 of the mate-half-life T1/2
rial. After one half-life, the number of nuclei has decayed to
half its initial value, i. e.,

N (T1/2) =
1

2
N0 (6.13)

The relation reads

T1/2 =
ln 2

λ
(6.14)

The bigger λ or the shorter the half-life is, the faster the sub-
stance decays.t

N(t)

N0

λ1
λ2λ3

λ1 < λ2 < λ3

• These examples demonstrate the extraordinary importance of
the exponential function with base e in nature: It describes all
phenomena in which the derivative of a function is proportional
to the function itself.

6.3 Harmonic Oscillation of a Spring Pendulum

• A spring pendulum is a mass of appropriate size (e. g., a little
steel ball) suspended from a helical spring. Let the mass bem,
the spring constant D.

• If we pull the mass down from its rest position and release it,
it begins to oscillate about this position. Our goal is to derive
the mathematical form of the oscillation and its period. For
the sake of simplicity we neglect all friction effects.

x(t)

m

D

• The equation of motion follows from the balance of forces: The
restoring force of the elongated or compressed spring is equal
to the force which accelerates the mass, so

ma(t) = −Dx(t) (6.15)
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Here x(t) is the displacement of the mass from its equilibrium
position at time t and a(t) = ẍ(t) = d2x/dt2 is its acceleration.
We can rewrite the equation

d2x

dt2
= −

D

m
x(t) (6.16)

• This is a differential equation of 2. order. The method of sep-
aration of the variables fails to solve it. Instead we use an
ansatz, i. e., we write down the presumed mathematical form
of the solution but leave its parameters open for later deter-
mination.

• Oscillations are described by periodic functions. Hence, we
choose the ansatz

ansatz for the solution x(t) = x0 e
iωt (6.17)

Its physically meaningful part is the real part. The derivatives
read

ẋ(t) = iωx0 e
iωt (6.18)

ẍ(t) = −ω2 x0 e
iωt (6.19)

• Inserting x and ẍ in the differential equation [Eq. (6.16)] yields

−ω2 x0 e
iωt = −

D

m
x0 e

iωt (6.20)

and, thus,

ω =

√
D

m
or T =

2π

ω
= 2π

√
m

D
(6.21)

• The ansatz [Eq. (6.17)] indeed solves the differential equation.
By inserting it and its second time derivative we obtain the
angular frequency (angular velocity) ω, the regular frequency
ν = ω/2π, and the period T = 1/ν = 2π/ω of the vibration.
The amplitude (the maximum elongation of the spring) x0 is
arbitrary. It depends on the initial condition, i. e., on the elon-
gation of the spring before releasing it.

• For the ansatz, we could have used the functions

x(t) = x0 e
−iωt (6.22)

x(t) = x0 sin (ωt) (6.23)

x(t) = x0 cos (ωt) (6.24)

as well. They all yield the same vibration frequency. Complex
exponentials are often more convenient for the calculation than
trigonometric functions, in particular when a damping term de-
scribing friction effects is included in the differential equation.
This point, however, is beyond the scope of the present tuto-
rial. In any case, the physically meaningful part of a complex
result is always the real part.


